期刊文献+

自由场波叠加噪声源识别的仿真研究 被引量:7

SIMULATION OF NOISE SOURCE IDENTIFICATION BASED ON THE WAVE SUPERPOSITION METHOD
下载PDF
导出
摘要 提出了一种基于波叠加的噪声源识别方法,并通过仿真验证了在自由场条件下该方法的正确性。根据波叠加的原理,声源产生的空间声场可以用其内部的一系列虚源点来等效代替,而虚源源强可以通过匹配场点的声压来求得,进而由这些虚源重构任意场点的各种声学量。由于噪声源识别问题对测量误差非常敏感,采用了Tikhonov方法进行正则化滤波。通过两个典型的仿真算例,研究了其定位精度与分辨率精度,取得了良好的效果,表明该方法可以在自由场条件下对任意形状物体进行噪声源识别。 An efficient technique of noise source identification(NSI) based on the Wave Superposition Method(WSM) is proposed.According to the theory of WSM,the total acoustic field radiated by an arbitrary-shaped noise radiator can be substituted by a series of virtual source points.These point sources locate on a surface interior to the body of the radiator,and their strengths can be evaluated in terms of a pressure measurement on another surface.Once calculated,the strengths of these point sources allow the pressure,intensity and instantaneous point velocity etc distribution exterior to the radiator to be calculated.With the visualized maps and animations,main noise sources can be easily located and quantified,also the noise transmission path can be found.A regularization method(Tikhonov) is applied to the technique since there inevitably exits errors in a real measurement.Through two typical simulations,the validity and efficiency of this technique are tested.In the further research,all these techniques including measurement technique,WSM and visualization technique can be integrated into a novel NSI system.
出处 《振动与冲击》 EI CSCD 北大核心 2006年第4期58-60,共3页 Journal of Vibration and Shock
基金 国家自然科学基金重点资助项目(50335030) 日本Fujitec公司资助项目
关键词 噪声源识别 波叠加 正则化 noise source indentification,wave superposition method,regularization
  • 相关文献

参考文献7

  • 1Schenck H A.Improved integral formulation for acoustic radiation problems.J.Acoust.Soc.Am.,1968,44(1):41-58 被引量:1
  • 2Burton A J,Miller G F.The application of integral equation methods to the numerical solution of some exterior boundary value problems.Proc.Roy Soc.London,1971,A323:201-210 被引量:1
  • 3Wang Z,Wu S F.Helmholtz Equation Least Squares (HELS) method for reconstructing the acoustic pressure field.J.Acoust.Soc.Am.,1997,102:2020-2032 被引量:1
  • 4Koopmann G H,Song L,Fahnline J B.A method for computing acoustic fields based on the principle of wave superposition.J.Acoust.Soc.Am.,1989,86:2433-2438 被引量:1
  • 5Wilton D T,Mathews I C,Jeans R A.A clarification of nonexistence problems with the superposition method.J.Acoust.Soc.Am.,1993,94(3):1676-1680 被引量:1
  • 6向宇,黄玉盈.基于复数矢径的波叠加法解声辐射问题[J].固体力学学报,2004,25(1):35-41. 被引量:22
  • 7肖廷凯,于慎根,王彦飞.反问题的数值解法.北京:科学出版社,2003 被引量:3

二级参考文献10

  • 1Schenck H A.Improved integral formulation for acoustic radiation problems.J Acoust Soc Am,1968,44(1):41-58 被引量:2
  • 2Burton A J,Miller G F.The application of integral equation methods to the numerical solution of some exterior boundaryvalue problems.Proc Roy Soc London,1971,A523:201-210 被引量:2
  • 3Burgess G J,Mahajerin E A.A comparison of the boundary element and superposition methods.Computers & Structures,1984,19(5-6):697-705 被引量:2
  • 4Koopmann G H,Song L,Fahnline J B.A method for computing acoustic fields based on the principle of wave superposition.J Acoust Soc Am,1989;86(6):2433-2438 被引量:2
  • 5Benthien G W,Schenck H A.Nonexistence and nonuniqueness problems associated with integral equation methods in acoustics.Computers & Structures,1997,65(3):295-305 被引量:4
  • 6Jeans R A,Mathews I C.The wave superposition method as a robust technique for computing acoustic fields.J Acoust Soc Am,1992,92(2):1156-1166 被引量:3
  • 7Wilton D T,Mathews I C,Jeans R A.A clarification of nonexistence problems with superposition method.J Acoust Soc Am,1993,94(3):1676-1680 被引量:2
  • 8Hwang J Y,Chang S C.A retracted boundary integral equation for the exterior acoustic problem with unique solution for all wavenumbers.J Acoust Soc Am,1991,90(2):1167-1180 被引量:2
  • 9王清,徐博侯.关于Helmholtz外问题的边界积分方程解的唯一性问题[J].应用数学和力学,1990,11(10):903-909. 被引量:7
  • 10胡海昌.论Helmholtz方程的一类边界积分方程的合理性[J].振动工程学报,1992,5(3):183-192. 被引量:7

共引文献22

同被引文献105

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部