摘要
在权重信息不完全的多属性群决策过程中,当决策者给出了各自的关于方案的偏好序关系之后,需要检验是否存在一组能支持所有决策者意见的权重(即协调权).在定义偏好关系“重要度”的基础上,构造了一个{0,1}混合整数线性规划模型,该模型不仅能够判断协调权是否存在,而且可以识别出导致协调权不存在的“最不重要”的偏好序关系.此外还证明当决策者修改这些序关系后,群决策问题一定存在协调权.最后用一个例子说明了该模型的有效性和实用性.
In multi-attribute group decision-making problem with incomplete weight information, after different participants provide the possible conflict preference such relations. This problem can be defined as i relations on alternatives, it is necessary to judge the consistency of dentifying a set of weights to achieve a compromise of the conflict on different preference. The paper first gives the definition of 'significance degree' on order relation, then constructs a ({0, 1 } mixed integer linear programming model. This model can not only judge the existence of compromise weight, but also identify some ' the least important preference orders' that result in the nonexistence of compromise weight. Furthermore, we prove that compromise weights can be achieved by participants' adjustments on these order relations. At last, an example is given to demonstrate the validity and rationality of this model.
出处
《管理科学学报》
CSSCI
北大核心
2006年第4期33-39,共7页
Journal of Management Sciences in China
基金
国家自然科学基金资助项目(7007202270571063)
国家杰出青年基金资助项目(79925004)
中国博士后科学基金资助项目(中博基20033)
关键词
群决策
偏好关系
数学规划
group decision-making
preference order
mathematical programming