期刊文献+

基于微粒群优化的序贯二次规划方法 被引量:2

Sequential Quadratic Programming Based on Particle Swarm Optimization
下载PDF
导出
摘要 文章针对约束非线性优化问题,将微粒群优化算法(PSO)和序贯二次规划(SQP)算法结合起来,提出了一种解决此类问题的有效算法。PSO可以看作是全局搜索器,而SQP则主要执行局部搜索。对于那些具有多个局部极值点的优化问题,大大增加了获得全局极值点的几率。由于PSO具有快速全局收敛的特点,同时SQP的局部搜索能力很强,所以所提算法可以快速获得全局最优值。将基于PSO的序贯二次规划算法在两个标准优化问题上进行仿真,结果证明与标准的PSO和SQP相比,算法具有明显的优越性。 This paper presents a novel and efficient method for solving the constrained nonlinear optimization problems,by combining the Particle Swarm Optimization(PSO) technique with the Sequential Quadratic Programming(SQP).PSO can be viewed as the global optimizer while the SQP is employed for the local search.Thus,the possibility of exploring a global minimum in problems with more local optima is increased.Benefit from the fast globally converging characteristics of PSO and the effective local search ability of SQP,the proposed method can obtain the global optimal result quickly.The proposed method is test for two benchmark optimization problems and the improved performance comparing with the standard PSO and SQP techniques testifies its validity.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第23期69-71,共3页 Computer Engineering and Applications
关键词 微粒群优化算法 序贯二次规划 非线性优化 Particle Swarm Optimization, Sequential Quadratic Programming, nonlinear optimization
  • 相关文献

参考文献7

  • 1J Kennedy,R C Eberhart.Particle Swarm Optimization[C].In:Proceeding of IEEE Int'1 Conference on Neural Networks,WA Australia,1995:1942 被引量:1
  • 2J Kennedy,R C Eberhart,Y Shi.Swarm Intelligence[M].San Francisco:Morgan Kaufmann Publishers,2001 被引量:1
  • 3D E Goldberg.Genetic Algorithms in Search,Optimization,and Machine Learning[M].MA:Addison Wesley,1989 被引量:1
  • 4刘波,王凌,金以慧,黄德先.微粒群优化算法研究进展[J].化工自动化及仪表,2005,32(3):1-7. 被引量:39
  • 5R C Eberhart,Y Shi.Particle Swarm Optimization:Developments,Applications and Resources[C].In:Proceedings of Congress on Evolutionary Computation,Seoul,Korea,2001:81 被引量:1
  • 6Nocedal,S J Wright.Numerical Optimization[M].Springer-Verlag,1999 被引量:1
  • 7王凌著..智能优化算法及其应用[M].北京:清华大学出版社,2001:230.

二级参考文献64

  • 1Kennedy J,Eberhart R C,Shi Y.Swarm Intelligence[M].San Francisco:Morgan Kaufman Publishers,2001. 被引量:1
  • 2Shi Y,Eberhart R C.A Modified Particle Swarm Optimizer[A].Proceedings of the IEEE International Conference on Evolutionary Computation[C].1998.69-73. 被引量:1
  • 3Shi Y,Eberhart R C.Fuzzy Adaptive Particle Swarm Optimization[A].Proceedings of the IEEE Congress on Evolutionary Computation[C].2001.101-106. 被引量:1
  • 4Clerc M,Kennedy J.The Particle Swarm:Explosion,Stability,and Convergence in a Multi-dimensional Complex Space[J].IEEE Transactions on Evolutionary Computation,2002,6:58-73. 被引量:1
  • 5Eberhart R C,Shi Y.Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization[A].Proceedings of the Congress on Evolutionary Computation[C].2000.84-88. 被引量:1
  • 6He S,Wu Q H,Wen J Y,et al.A Particle Swarm Optimizer with Passive Congregation[J].Biosystems,2004,78:135-147. 被引量:1
  • 7Ratnaweera A,Halgamuge S K,Watson H C.Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients[J].IEEE Transactions on Evolutionary Computation,2004,8(3):240-255. 被引量:1
  • 8Monson C K,Seppi K D. The Kalman Swarm-A New Approach to Particle Motion in Swarm Optimization [A]. Proceedings of the Genetic and Evolutionary Computation Conference [C].Springer,2004. 140-150. 被引量:1
  • 9Lφvbjerg M,Rasmussen T K,Krink T.Hybrid Particle Swarm Optimiser with Breeding and Subpopulations[A].Proceedings of the Genetic and Evolutionary Computation Conference[C].2001.469- 476. 被引量:1
  • 10van den Bergh F,Engelbrecht A P.A Cooperative Approach to Particle Swarm Optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):225-239. 被引量:1

共引文献38

同被引文献37

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部