期刊文献+

基于并行遗传神经网络算法的限制搜索区域最优路径方法 被引量:3

The Method of Restricted Searching Area Optimal Route Guidance Based on Parallel Genetic and Neural Network Algorithm
下载PDF
导出
摘要 在大规模路网的路径诱导中,研究了基于神经网络的交通信息实时预测方法,构造了具有时变性的路阻矩阵,解决了传统静态路阻存在的局限性问题;探讨了基于并行遗传算法的最优路径求解问题,给出了相应的遗传、变异算子和群体更新方式,提出了矩形限制搜索区域方法,降低了并行遗传算法的搜索范围,解决了遗传算法在大规模路网中求解最优路径时存在的实时性差、收敛速度慢等问题;仿真实验表明该方法满足大规模路网路径诱导的准确性、实时性和快速性要求。 To work out route guidance in gigantic traffic network, the traffic information forecasting method based on Artificial Neural Network is studied in-depth and the time-varied road weight matrixes are constructed, which solve the problem of limitation in traditional and static road weight. The Parallel Genetic Algorithm (PGA) for optimal route choice is discussed in this paper and the corresponding genetic operator, mutation operator and the refresh way of the populations are also proposed. A method of Rectangle Restricted Searching Area (RRSA) which can reduce the searching area of PGA is presented. The problem of bad real-time and astringency of PGA existed in computing the optimal route in gigantic traffic network has also been solved by using RRSA. To probe into the technology of the Route Guidance, a large number of experiments combined with the required analysis of the results have been carried on. It is indicated by simulation that the presented method of optimal route choice has achieve the required accuracy, real-time and quick guidance in gigantic traffic network.
出处 《公路交通科技》 CAS CSCD 北大核心 2006年第8期126-129,142,共5页 Journal of Highway and Transportation Research and Development
基金 科技部国际重点合作资助项目(2003DF020009)
关键词 神经网络 路阻矩阵 矩形限制搜索区域 并行遗传算法 最优路径选择 neural network road weight matrix rectangle restricted searching area parallel genetic algorithm optimal route choice
  • 相关文献

参考文献8

二级参考文献20

  • 1陈行星,崔伟宏.城市快速反应系统实验研究[J].环境遥感,1996,11(3):227-233. 被引量:10
  • 2F.Harary.Trees and Unicyclic Graphs[M].1967. 被引量:1
  • 3D.J.Bertsimas,D.Smithchi-Levi.A new generation of Vehicle Routing Research: Roubust, Algrithm,Addressing Uncertainty, Operations Res.Mar/Apr[J].1996. 被引量:1
  • 4IEEE Position.Location and Navigation Symosium(PLAN'90),359-363. 被引量:1
  • 5Zhou Ming, Sun Shudong.Genetic Algorithm: Theory And Applications[M].1982. 被引量:1
  • 6Goldberg D E. Genetic Algorithm in Search, Optimization and Machine Learning[J].Addsion-Wesley,1989. 被引量:1
  • 7SUNG K,MICHAEL GH,SEONG BM.Shortest paths in a network with time-dependent flow speeds[J].European Journal of Operational Research,2000,121(12):32-39. 被引量:1
  • 8FU LP,RILETT LR.Expected Shortest Paths In Dynamic and Stochastic Traffic Networks[J].Transportation Research-Part B,1998,32(7):499-514. 被引量:1
  • 9KAUFMAN DE,SMITH RL.Fastest path in time-dependent networks for intelligent vehicle-highway systems application[J].IVHS Journal,1993,11(1):1-11. 被引量:1
  • 10ORDA A,ROM R.Shortest path and minimum-delay algorithms in networks with time-dependent edge-length[J].Journal of ACM,1990,37(3):607-625. 被引量:1

共引文献135

同被引文献25

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部