摘要
由于可重构机器人构型的多样性,其运动学逆解的自动生成是应用中的关键问题。采用旋量和指数积公式建立可重构机器人的运动学模型,系统地分析了指数积公式的化简方法、子问题的分类和计算方法并加以实现,为可重构机器人封闭形式的运动学逆解提供了一种通用的可分解的计算方法,降低了求解的复杂性。通过一个典型实例验证了算法的有效性与可重用性。
It is a key problem to generate the inverse kinematics automatically for reconfigurable robots, because such robots may assume various configurations. Screw and the Product-of-exponential(POE) formulas are employed herein to model the kinematics of reconfigurable robots. The POE formula can be converted to canonical subproblems through decomposition and adjoint transformation. Three classes, twenty-eight types subproblems containing geometric or algebraic solutions are identified and solved, which can be reused in different configurations. A generalized, decomposable and reusable approach for close-form inverse kinematics of reconfigurable robots is developed based on POE and subproblems. An example is given to demonstrate the effectiveness of this method.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2006年第8期210-214,共5页
Journal of Mechanical Engineering
关键词
可重构机器人
运动学逆解
指数积公式
子问题
Reconfigurable robot Inverse kinematics Product of exponential formula Subproblems