期刊文献+

一种高效的海量遥感栅格数据库的空间可视化检索算法 被引量:6

An Efficient Spatial Visual Retrieval Algorithm on Magnanimous Remote Sensing Raster Image Data Base
下载PDF
导出
摘要 该文针对利用GIS现有空间查询接口进行海量遥感栅格数据库空间可视化检索效率低下的问题。在深入研究海量遥感栅格数据库的空间可视化检索特点的基础上,提出了一种直接针对关系数据库(RDBMS)存储过程的高效的海量遥感栅格数据库复杂空间可视化检索算法,并对算法进行了多个级别的性能优化。该算法可直接应用于海量遥感栅格数据库基于多边形、椭圆和线穿越等复杂空间可视化查询的应用环境。实验结果说明该算法具有稳定性和普适性。 It is inefficient to visually retrieve image on magnanimous remote sensing raster image data base by some GIS spatial query interface. An efficient spatial visual retrieval algorithm aimed at directly storage procedure of Relational Data Base Management System (RDBMS) is described and optimized on performance on many levels in this paper after the character of magnanimous remote sensing raster image database spatial visual retrieval is studied in depth. This algorithm is implemented in a real application environment of magnanimous remote sensing raster image data base based on the spatial polygon query, ellipse query and line through query. The results of experiment demonstrate that this algorithm is stable and adaptable.
出处 《电子与信息学报》 EI CSCD 北大核心 2006年第8期1463-1467,共5页 Journal of Electronics & Information Technology
基金 国家863计划(2003AA131152)资助课题
关键词 可视化检索 空间查询 查询优化 存储过程 Visual retrieval, Spatial query, Query optimization, Stored procedures
  • 相关文献

参考文献7

二级参考文献22

  • 1刘开瑛 郭炳炎.自然语言理解[M].北京:科学出版社,1991.31-41. 被引量:5
  • 2[1]Guttman A. R-tree: a dynamic index structure for spatial search[A]. Proc ACM SIGMOD Int Conf on Management of Data[C]. Boston, MA, 1984. 47~57. 被引量:1
  • 3[2]Orenstein J A. Spatial query processing in an objectoriented database system [A]. Proc ACM SIGMOD Int Conf on Management of Data [C]. Washington DC, 1986. 181~190. 被引量:1
  • 4[3]Brinkhoff T, Kriegel H P, Seeger B. Efficient processing of spatial joins using R-trees[A]. ACM SIGMOD Int Conf on Management of Data[C]. 1993. 237~246. 被引量:1
  • 5[4]Lo M L, Ravishankar C V. Spatial hash joins [A]. ACM SIGMOD[C]. Washingtion D C, 1996. 247~258. 被引量:1
  • 6[5]Lo M L, Ravishankar C V. The design and implementation of seeded trees: an efficient method for spatial joins[J]. IEEE Trans on Knowledge and Data Engineering, 1998,10(1):136~152. 被引量:1
  • 7[6]Papadias D, Mamoulis N. Integration of spatial join algorithms for processing multiple inputs[A]. Proceedings of the ACM SIGMOD International Conference on Management of Data[C]. Pennsylvania, June, 1999.78~91. 被引量:1
  • 8[1]Brinkhoff T, Kriegel H P, Seeger B. Efficient processing of spatial joins using R-trees [A]. In: Proceedings of the 1993 Association for Computing Machinery Special Interest Group International Conference on Management of Data [C].Washington,D. C. USA,1993: 237~246. 被引量:1
  • 9[2]Huang Y W, ling N, Rundensteiner E A. A cost model for estimating the performance of spatial joins using R-trees [A].In: Proceedings of Ninth International Conference on Scientific and Statistical Database Management [C]. Olympia, Washington USA,1997: 30~38. 被引量:1
  • 10[3]Mamoulis N, Papadias D. Integration of spatial join algorithms for processing multiple inputs[A]. In: Proceedings of the 1999 Association for Computing Machinery Special Interest Group International Conference on Management of Data [C].Philadelphia,Pennsylvania USA, 1999: 1 ~ 12. 被引量:1

共引文献42

同被引文献42

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部