期刊文献+

基于PSO算法的结构损伤检测研究

Structural Damage Detection Based on PSO
下载PDF
导出
摘要 结构损伤检测问题常常可转化为数学上的约束优化问题。采用粒子群算法(PSO)求解约束优化问题,可求解结构损伤检测问题。首先介绍基本粒子群算法,然后建立结构损伤检测问题的数学模型,采用悬臂梁单损伤和多损伤的数值仿真研究,验证了粒子群算法求解结构损伤检测问题的可行性,最后针对实际结构振型测试时振型的非完备性,直接利用非完备振型,求解损伤检测问题,数值仿真结果表明,利用非完备振型,仍可得到较好的检测结果。 Structural damage detection can often be converted into the problem of constrained optimization. Since the particle swarm optimization (PSO) algorithm is effective for the constrained optimization problem, it can also be a useful method for structural damage detection. The theory of PSO is in-st explained in this paper, and then the mathematic model of structural damage detection is proposed. The numerical simulation of a cantilever, in beth single and multi damage, shows that PSO is valid for structural damage detection. In light of the incompletion of model shapes of the real structure, the incomplete model is used to calculate the objective function. The results suggest that the method doesn' t need the reduction of the finite elemental model and the model shape expansion, and is successful for structural damage detection.
出处 《武汉科技大学学报》 CAS 2006年第4期415-418,共4页 Journal of Wuhan University of Science and Technology
关键词 粒子群算法 损伤检测 约束优化 悬臂梁 PSO structural damage detection constrained optimization cantilever beam
  • 相关文献

参考文献7

  • 1Doebling S W,Farrar C R,Prime M B,et al.Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics:A Literature Review[R].Los Alamos National Laboratory Report LA-13070-MS,1996. 被引量:1
  • 2朱宏平,徐斌,黄玉盈.结构动力模型修正方法的比较研究及评估[J].力学进展,2002,32(4):513-525. 被引量:47
  • 3Kennedy J,Eberhart R C.Particle Swarm Optimization[A].Proc IEEE Int Conf Neural Networks[C].Piscataway,NJ:IEEE Press,1995.1 942-1 948. 被引量:1
  • 4Kennedy J,Eberhart R C,Shi Y.Swarm Intelligence[M].San Francisco:Morgan Kaufmann Publishers,2001.100-130. 被引量:1
  • 5Parsopoulos K E,Vrahatis M N.Particle Swarm Optimization Method for Constrained Optimization Problems[A].Intelligent Technologies:From Theory to Applications[C].Amsterdam:IOS Press,2002.214-220. 被引量:1
  • 6Parsopoulos K E,Vrahatis M N.Recent Approaches to Global Optimization Problems through Particle Swarm Optimization[J].Natural Computing,2002,1(2-3):235-306. 被引量:1
  • 7Shi Y H,Eberhart R C.A Modified Particle Swarm Optimizer[A].IEEE International Conference on Evolutionary Computation[C].Anchorage:Alaska,1998.69-73. 被引量:1

二级参考文献64

  • 1向锦武,周传荣,张阿舟.基于建模误差位置识别的有限元模型修正方法[J].振动工程学报,1997,10(1):1-7. 被引量:16
  • 2徐宜桂,史铁林,杨叔子.基于神经网络的结构动力模型修改和破损诊断研究[J].振动工程学报,1997,10(1):8-12. 被引量:44
  • 3Bathe K J. Finite Element Procedures in Engineering Analysis. New Jersey: Prentice-Hall, Englewood Cliffes,1982. 1~5 被引量:1
  • 4Friswell M I, Mottershead J E. Finite Element Model Updating in Structural Dynamics. Dordrecht, Boston: Klumer Academic Publishers, 1995. 1~6 被引量:1
  • 5Mottershead J E, Friswell M I. Model updating in structural dynamics: a survey. Journal of Sound & Vibration, 1993, 167(3): 347~375 被引量:1
  • 6Zhang Q W, Chang T Y P, Chang C C. Finite element model updating for the Kap Shui Mun cable-stayed bridge. Journal of Bridge Engineering, ASCE, 2000, 6(4): 285~293 被引量:1
  • 7Oreta A W C, Tanabe T A. Element identification of member properties of framed structures. Journal of Structural Engineering, ASCE, 1994, 120(4): 1961~1976 被引量:1
  • 8Zimmerman D C, Widengren M. Correcting finite element modes using a symmetric eigenstructure assignment technique. AIAA J, 1990, 28(9): 1670~1676 被引量:1
  • 9Doebling S W, Farrar C R, Prime M B. A summary review of vibration-based damage identification methods. The Shock and Vibration Digest, 1998, 30:91~305 被引量:1
  • 10Chester M. Neural Networks; A Tutorial. New Jersey: Prentice-Hall Inc, 1993 被引量:1

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部