期刊文献+

基于Galerkin法弱形式的时间积分法 被引量:5

A TIME INTEGRATION METHOD BASED ON THE WEAK FORM GALERKIN METHOD
下载PDF
导出
摘要 从加权残差法的角度出发,利用Galerkin法的弱形式建立了一种高精度的隐式时间积分法。在时间单元上用拉格朗日插值函数构造近似解。给出了使用线性、二次和三次插值函数构造的积分格式,它们的精度依次为二阶、四阶和六阶。求解时首先消去时间单元内部的未知量,有效地提高了计算效率。通过减缩积分,可将条件稳定的格式变为无条件稳定的格式。数值算例表明该方法的精度和效率明显高于Newmark法。 An implicit high-order accurate time integration method is presented based on the weak form Galerkin method. In each time element, approximate solution is constructed by the Lagrangian interpolation functions. Three formulations, which are two-, four-, six-order of accuracy, are obtained by using linear, quadratic and cubic Lagrangian interpolation functions. When solving the equations, unknown displacements in the time elements are eliminated first to make the method more effective. Stability analysis shows that the formulations are conditionally stable. By using reduced integration, three unconditionally stable formolations are obtained. Numerical examples are included to illustrate the behavior of these algorithms. The results show that their precision and efficiency are remarkably higher than those of the Newmark method.
出处 《工程力学》 EI CSCD 北大核心 2006年第7期8-12,共5页 Engineering Mechanics
基金 国家自然科学基金资助项目(10172052)
关键词 结构动力学 时间积分法 加权残差法 GALERKIN法 弱形式 structural dynamics time integration method weighted residual method Galerkin method weak form
  • 相关文献

参考文献16

  • 1Zienkiewiez O C,Taylor R L.The Finite Element Method[M].Oxford:Butterworth-Heinemann,2000. 被引量:1
  • 2郑兆昌.机械振动[M].北京:机械工业出版社,1986. 被引量:9
  • 3Hughes T J R.The Finite Element Method:Linear Static and Dynamic Finite Element Analysis[M].Englewood Cliffs:Prentice-Hall,1987 被引量:1
  • 4Fried I.Finite-element analysis of time-dependent phenomena[J].AIAA Journal,1968,7:1170~ 1172. 被引量:1
  • 5Argyris J H,Scharpf D W.Finte elements in time and space[J].Nuclear Engineering and Design,1969,10:456~464. 被引量:1
  • 6Oden J T.A general theory of finite element.2.Application[J].International Journal for Numerical Method in Engineering,1969,1:247~259. 被引量:1
  • 7Atluri S N.An assumed stress hybrid finite element model for linear elastodynamic analysis[J].AIAA Journal,1973,7:1028~1031. 被引量:1
  • 8Bailey C D.Application of Hamilton's law of varying action[J].AIAA Journal,1975,13:1154~1157. 被引量:1
  • 9Bailey C D.The method of Ritz applied to the equation of Hamilton[J].Computer Methods in Applied Mechanics and Engineering,1976,7:235~247. 被引量:1
  • 10Bailey C D.Hamilton,Ritz,and Elastodynamics[J].Journal of Applied Mechanics,1976,43:684~688. 被引量:1

共引文献8

同被引文献44

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部