期刊文献+

基于粗糙集的T-S模糊神经网络在回转窑烧结过程中的应用 被引量:1

A T-S Fuzzy Neural Network Based on Rough Sets and Its Application to Rotary Kiln Sintering Process
下载PDF
导出
摘要 基于粗糙集理论的知识约简方法和T-S模糊神经网络的非线性映射理论,针对回转窑烧结过程被控对象复杂、各参数之间相互耦合及难以建立精确数学模型的特点,提出一种RS-FNN智能控制策略。采用基于一种新的聚类有效性准则函数的模糊C均值聚类算法对连续属性进行离散化;然后利用粗糙集理论由历史数据样本提取约简规则集,对应的T-S模型具有反映数据特征的良好拓扑结构;最后T-S模型参数由梯度下降混合最小二乘法进行精调。该方法应用于铁矿氧化球团回转窑生产过程控制取得了良好效果,增强了系统容错及抗干扰的能力。 Based on the idea of the knowledge reduction of the rough sets (RS) theory and the nonlinearity mapping of Takagi-Sugeno fuzzy neural network (FNN), a kind of RS-FNN control approach is presented and applied in the rotary kiln sintering process due to its nonlinearities in the dynamics and the large dimensionality of the problem. First, fuzzy C-means (FCM) clustering method based on a new cluster validity index is used to obtain the optimal discrete values of the continuous attributes. Then, RS theory is adopted to obtain the reductive rules using industrial history datum and corresponding FNN model has better topology configuration. Finally, the structure parameters of T-S fuzzy model are fine-tuned by a hybrid algorithm integrating the gradient descent method with least-squares estimation. The proposed approach was applied to control rotary kiln iron ore oxidized pellets sintering process and good results were obtained.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第7期796-800,848,共6页 Journal of East China University of Science and Technology
基金 国家自然科学基金项目(60474058 60534010)
关键词 粗糙集 T-S模型 聚类有效性 模糊C均值聚类 回转窑 rough sets T-S model cluster validity fuzzy C-means clustering rotary kiln
  • 相关文献

参考文献16

二级参考文献23

  • 1苗夺谦.Rough Set理论及其在机器学习中的应用研究(博士学位论文)[M].北京:中国科学院自动化研究所,1997.. 被引量:3
  • 2Wang Jue,J Comput Sci Technol,1998年,13卷,2期,189页 被引量:1
  • 3苗夺谦,博士论文,1997年 被引量:1
  • 4Hu X H,Int J Computational Intelligence,1995年,11卷,2期,323页 被引量:1
  • 5Pawlak Z. Rough set[J]. Int. J. of Computer and Information Science,1982 (11): 341-356. 被引量:1
  • 6Tsumoto Shusaku. Extraction of experts' decision rules from clinical databases using rough set model[J]. Intelligent Data Analysis, 1998,2(1-4): 215-227. 被引量:1
  • 7Hong T P, Wang T T, Wang S L, et al. Learning a coverage set of maximally general fuzzy rules by rough sets[J]. Expert Systems with Applications 2000, 19(2): 97-103. 被引量:1
  • 8Chan Chienchung. A rough set approach to attrobute generalization in data mining [A].Infomation Sciences[C]. 1998,107(1-4): 169-176. 被引量:1
  • 9Nguyen Hoang Phuong, Le Linh Phong, Santiprabhob P,et al. Approach to generating rules for expert systems using rough set theory[A]. IFSA World Congress and 20th NAFIPS International Conference[C]. 2001: 877-882. 被引量:1
  • 10Shen Qiang, Chouchoulas Alexios. A rough-fuzzy approach for generating classification rules[J]. Pattern Recognition, 2002,(35)11:2425-2438. 被引量:1

共引文献228

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部