期刊文献+

基于D-S证据推理的水轮机调速器故障诊断 被引量:1

Fault Diagnosis in Hydraulic Turbines Based on D-S Evidential Reasoning
下载PDF
导出
摘要 为了更好地进行水轮机调速器的故障诊断,利用D-S证据推理对不同的神经网络技术得出的结果进行数据融合。仿真结果证实,利用D-S证据推理所得出的结论比单纯利用神经网络得出的结果要理想,它减小了误诊率,提高了水轮机故障诊断的准确率。 In order to better estimate the fault diagnosis of the hydraulic turbine governing system, the D - S evidential reasoning is used for data fusion with the result of different neural networks. By simulation, it can be clearly found that the result of the data fusion is much better than that of the neural networks. It decreases the fault ratio, and increases veracity of the fault diagnosis of hydraulic turbines.
出处 《计算机与数字工程》 2006年第8期87-89,163,共4页 Computer & Digital Engineering
关键词 水轮机调速器 故障诊断 神经网络 D—S证据推理 hydraulic turbine goveming system, fault diagnosis, artificial neural, D- S evidential reasoning
  • 相关文献

参考文献7

二级参考文献14

  • 1李录平.凝汽器低真空运行的原因及模糊诊断[J].汽轮机技术,1993,35(5):45-48. 被引量:32
  • 2张炜,张优云,战仁军.BP网络的改进算法及其在旋转机械故障诊断中的应用[J].汽轮机技术,1994,36(6):342-347. 被引量:11
  • 3刘曙光,郑崇勋,刘明远.前馈神经网络中的反向传播算法及其改进:进展与展望[J].计算机科学,1996,23(1):76-79. 被引量:50
  • 4Subhasis Nandi, Toliyiat H A. Condition monitoring and fault diagnosis of electrical machines-A review. In Conference Record IEEE-IAS. Annual Meeting, Phoenix,AZ, 1999, 1: 197-204 被引量:1
  • 5Milimonfared J, Kelk H M, Nadi S, et al. A novel approach for broken-rotor-bar detection in cage induction motors. IEEE Trans. on Industry Applications, 1999, 35 (5) : 1000-1006 被引量:1
  • 6Elkasabgy N M, Eastham A R, Dawson G E. Detection of broken bars in the cage rotor on an induction machine. IEEE Trans. on Industry Applications, 1992,22 (1) : 165-171 被引量:1
  • 7Thomson W T, Fenger M. Current signature to detect induction motor faults.Industry Applications Conference Record of the 2000, 2000, 7 (4) : 24-34 被引量:1
  • 8Burnett R,Watson J F, Elder S. Application of modern signal processing techniques for use in rotor fault detection and location within three-phase induction motors. IEEE Proceedings on Integrating Instrunentation and Control, 1995:426~431 被引量:1
  • 9Kral C, Pirker F, Pascoli G, et al. A labview based rotor fault diagnostics tool for inverter fed induction machines by means of the Vienna monitoring method at variable speed. Power Electronics Congress,Ⅶ IEEE International, 2000:324~329 被引量:1
  • 10Dobrodeyev P N, Volokhov S A, et al. Method for detection of broken bars in induction motors. IEEE Trans. on Magnetics. 2000, 36 (5) : 3608-3610 被引量:1

共引文献27

同被引文献10

  • 1侯新国,吴正国,夏立.基于D-S证据理论的感应电动机转子故障诊断方法研究[J].电工技术学报,2004,19(6):36-41. 被引量:9
  • 2夏阳,陆余良.D-S证据推理及算法实现[J].安徽大学学报(自然科学版),2004,28(6):20-25. 被引量:12
  • 3薛昌友,李东鑫,马暄,等.基于D-S证据理论的潜艇多源信息融合系统[J].舰船电子工程,2008,28(11):22-24. 被引量:1
  • 4LLINAS J, HALL D L. An introduction to multi-sensor data fusion [ C ]. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 1998 (6) :537 - 540. 被引量:1
  • 5PEROLS J, CHARI K, AGRAWAL M. Information market- based decision fusion [ J ]. Management Science, 2009,55 (5) :827 -842. 被引量:1
  • 6DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping [ J ]. Annals of Math. Statistics, 1967,38:325 - 339. 被引量:1
  • 7SHAFER G. A mathematical theory of evidence [ M ]. Princeton : Princeton University Press, 1976. 被引量:1
  • 8FRANCOIS J, GRANDVALET Y, DENEUX T, ROGER J M. Resample and combine: an approach to improving uncertainty representation in evidential pattern classification [ J]. Information Fusion,2003 (4) :75 - 85. 被引量:1
  • 9CHEN Y, WANG G Y, CHEN L G, LI B. Research of script figure character recongnition algorithm based on fuzzy mathematics and D - S evidential theory [ C ]. Control and Decision Conference ,2009 : 1230 - 1233. 被引量:1
  • 10ZHAO P, MU X D, YI Z X, YIN Z R. Software - intensive equipment fault diagnosis research based on D - S evidential theory [ C ]. International Workshop on Knowledge Discovery and Data Mining,2009:523 -526. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部