摘要
在进行裂隙岩体非饱和渗流研究中,选用合理的裂隙岩体毛管压力-饱和度关系曲线非常关键。基于裂隙岩体非饱和渗流特点,简述当前国内外非饱和裂隙岩体毛管压力-饱和度关系曲线模型的研究状况。总结出非饱和裂隙渗透具有毛细管流、薄膜流、优先流、裂隙-基质相互作用和沟槽流特点;分析了建立单裂隙岩体非饱和渗流毛管压力-饱和度关系曲线模型的主要方法,包括物模试验法、数值计算法和数学推导法,并归纳这些方法的计算结果;最后,结合渗流特点,对各种曲线模型结果进行比较,进一步分析得出:(1)目前的曲线关系均建立在毛管理论基础之上,几乎没有反映渗流其他特点的关系曲线;(2)运用数值计算法和数学推导建立曲线模型较为简便;(2)在排水曲线初始时段,Brooks-Corey(BC)模型模拟得到的结果比van Genuchten(VG)模型要好些,而在末尾时段VG模型要好些。
It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. Based on the characteristic of the unsaturated fractured mass, the research on the capillary pressure-saturation curve in an unsaturated fractured mass is summarized. It can be seen that seepage in an unsaturated fractured mass has some special characteristics including capillary flow, film flow, preferential flow and facture-matrix interaction; three methods to establish the capillary pressure-saturation curve, including physical laboratory, numerical simulation and mathematical computation; and all the results of these methods are also summarized. Finally, according to the characteristics of the seepage in an unsaturated rock mass and all these result of the capillary pressure-saturation curve, the following results can be concluded: (1) there is no capillary pressure-saturation curve which can reflect the other characters of the seepage in unsaturated rock mass except the capillary flow; (2) it is a convenient method to build the capillary pressure-saturation curve by numerical simulation and mathematical computation; (3) the capillary pressure-saturation curve simulated by Brooks-Corey(BC) model is better than by van Genuchten(VG) at initial stage during drainage, but worse at the last stage.
出处
《岩土力学》
EI
CAS
CSCD
北大核心
2006年第8期1253-1257,共5页
Rock and Soil Mechanics
基金
国家自然科学基金委员会
二滩水电开发有限责任公司雅砻江水电开发联合研究基金项目(No.50579092)
教育部"新世纪优秀人才支持计划"资助项目(2005)
湖北省青年杰出人才基金项目(No.2004ABB012)
三峡大学湖北省"楚天学者计划"特聘教授资助项目(No.603108)
三峡大学科技创新团队资助项目(No.603402)
教育部留学回国人员科研启动基金资助项目(No.106-220331)
关键词
非饱和
渗流
毛管压力
单裂隙
unsaturated
seepage
capillary pressure
single fracture