摘要
We develop and analyze a first-order system least-squares spectral method for the second-order elhptic boundary value problem with variable coefficients. We first analyze the Chebyshev weighted norm least-squares functional defined by the sum of the Lw^2- and Hw^-1- norm of the residual equations and then we eplace the negative norm by the discrete negative norm and analyze the discrete Chebyshev weighted least-squares method. The spectral convergence is derived for the proposed method. We also present various numerical experiments. The Legendre weighted least-squares method can be easily developed by following this paper.
We develop and analyze a first-order system least-squares spectral method for the second-order elhptic boundary value problem with variable coefficients. We first analyze the Chebyshev weighted norm least-squares functional defined by the sum of the Lw^2- and Hw^-1- norm of the residual equations and then we eplace the negative norm by the discrete negative norm and analyze the discrete Chebyshev weighted least-squares method. The spectral convergence is derived for the proposed method. We also present various numerical experiments. The Legendre weighted least-squares method can be easily developed by following this paper.