期刊文献+

CHEBYSHEV WEIGHTED NORM LEAST-SQUARES SPECTRAL METHODS FOR THE ELLIPTIC PROBLEM 被引量:2

CHEBYSHEV WEIGHTED NORM LEAST-SQUARES SPECTRAL METHODS FOR THE ELLIPTIC PROBLEM
原文传递
导出
摘要 We develop and analyze a first-order system least-squares spectral method for the second-order elhptic boundary value problem with variable coefficients. We first analyze the Chebyshev weighted norm least-squares functional defined by the sum of the Lw^2- and Hw^-1- norm of the residual equations and then we eplace the negative norm by the discrete negative norm and analyze the discrete Chebyshev weighted least-squares method. The spectral convergence is derived for the proposed method. We also present various numerical experiments. The Legendre weighted least-squares method can be easily developed by following this paper. We develop and analyze a first-order system least-squares spectral method for the second-order elhptic boundary value problem with variable coefficients. We first analyze the Chebyshev weighted norm least-squares functional defined by the sum of the Lw^2- and Hw^-1- norm of the residual equations and then we eplace the negative norm by the discrete negative norm and analyze the discrete Chebyshev weighted least-squares method. The spectral convergence is derived for the proposed method. We also present various numerical experiments. The Legendre weighted least-squares method can be easily developed by following this paper.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2006年第4期451-462,共12页 计算数学(英文)
关键词 Least-squares methods Spectral method Negative norm. Least-squares methods, Spectral method, Negative norm.
  • 相关文献

参考文献13

  • 1C. Bernardi and Y. Maday, Approximation Spectrales de Problémes aux Limites Elliptiques,Springer-Verlag, Paris (1992). 被引量:1
  • 2P.B. Bochev and M. D. Gunzburger, Finite element methods of least-squares type, SIAM Rev.,40:4 (1998), 789-837. 被引量:1
  • 3J. H. Bramble, R. D. Lazarov, and J. E. Pasciak, A least-squares approach based on a discrete minus one inner product for first order system, Math. comp. 66 (1997), 935-955. 被引量:1
  • 4Z. Cai, R. D. Lazarov, T. Manteuffel, and S. McCormick, First-order system least squares for second-order partial differential equations: Part I, SIAM J. Numer. Anal. 31 (1994), 1785-1799. 被引量:1
  • 5Z. Cai, T. Manteuffel, and S. McCormick, First-order system least squares for second-order partial differential equations: Part II, SIAM J. Numer. Anal., 34 (1997), 425-454. 被引量:1
  • 6Z. Cai, T. Manteuffel, S. McCormick and J. Ruge, First-order system LL* (FOSLL*): scalar elliptic partial differential equations, SIAM J. Numer. Anal., 39 (2001), 1418-1445. 被引量:1
  • 7Z. Cal and B. C. Shin, The discrete first-order system least squares: the second-order elliptic partial boundary value problem SIAM J. Numer. Anal., 40 (2002), 307-318. 被引量:1
  • 8C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, "Spectral Methods in Fluid Dynamics", Springer-Verlag, New York (1988). 被引量:1
  • 9S. D. Kim, H.-C. Lee and B. C. Shin, Pseudo-spectral least-squares method for the second-order elliptic boundary value problem, SIAM J. Numer. Anal., 41:4 (2003), 1370-1387. 被引量:1
  • 10S. D. Kim, H.-C. Lee and B. C. Shin, Least-squares spectral collocation method for the Stokes equations, Numer. Meth. PDE., 20 (2004), 128-139. 被引量:1

同被引文献1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部