期刊文献+

平面三次PH曲线偶C^1 Hermite插值解的构造和形状分析 被引量:1

CONSTRUCTION AND SHAPE ANALYSIS OF THE COUPLE OF PLANAR PH CUBIC C^1 HERMITE INTERPOLATION
下载PDF
导出
摘要 一般情况下,三次PH曲线偶的C1Herm ite插值问题有四个不同的解。在这四个解中,只有一条曲线能很好地满足几何设计的要求。已有的插值算法都是依赖于构造出所有四个解,利用绝对旋转指标或弹性弯曲能量来找出这条“好”的插值曲线。本文提出一种新的方法以区分这些解,即用由三次PH曲线偶和惟一经典三次插值曲线的速端曲线形成的闭环的弯曲数来区分。对于“合理”的Herm ite数据,本文还给出了不需计算和比较所有的四个解便可直接构造“好”的三次PH曲线偶的方法。 In general, the problem of interpolating given first-order Hermite data( end points and derivatives ) by the couple of planar Pythagorean-hodograph (PH) cubic curves has four distinct formal solutions. Ordinarily, only one of these interpolants is of acceptable shape. Previous interpolation algorithms have relied on explicitly constructing all four solutions, and invoking a suitable measure of shape, the absolute rotation index or elastic bending energy-to select the" good" interpolant. A new means to differentiate among the solutions is introduced here, namely, the winding number of the closed loop formed by a union of the hodographs of the couple of PH cubics and of the unique "ordinary" cubic interpolant. It also shows that, for" reasonable" Hermite data, the "good" couple of PH cubics can be directly constructed, obviating the need to compute and compare all four solutions.
出处 《计算机应用与软件》 CSCD 北大核心 2006年第8期109-111,138,共4页 Computer Applications and Software
关键词 PH曲线 HERMITE插值 弯曲数 Pythagorean-hodograph curves Hermite interpolation Winding number
  • 相关文献

参考文献5

  • 1B. Juttler, Hermite interpolation by Pythagorean hodograph curves of degree seven, Mathematics of Computation ,2001,70 : 1089 - 1111. 被引量:1
  • 2H. P. Moon, R. T. Farouki, H. I. Choi, Construction and shape analysis of PH quintic Hermite interpolants. Computer Aided Geometric Design,2001,18:93-115. 被引量:1
  • 3R. T. Farouki, C. A. Neff. Hermite interpolation by Pythagorean-hodograph quintics Mathematics of Computation, 1995,64 : 1589 - 1609. 被引量:1
  • 4R. T. Farouki, H. P. Moon, B. Rarani. Algorithms for Minkowski products and implicitly-defined complex sets. Advances in Computational Mathematics ,2000,13 : 199 - 299. 被引量:1
  • 5王国谨 汪国昭 等.计算机辅助几何设计[M].北京:高等教育出版社,2001.. 被引量:8

共引文献7

同被引文献7

  • 1Farouki,R T,Sakkalis T.Pythagorean Hodographs[J].IBM Journal of Research and Development,1990,34 (5),736 -752. 被引量:1
  • 2Farouki,R T,Sakkalis T.Pythagorean Hodographs Spacescurves[J].Advance in Computational Mathematics,1994,2,41-46. 被引量:1
  • 3Farouki,R T,Neff,C A.Hermite Interpolation by Pythagorean Hodograph Quintics[J].Mathematics of Computation,1995,64(212),1589-1609. 被引量:1
  • 4Faux I D,Pratt M J.Computational Geometry for Design and Manufacture.Ellis Horwood,Chichester,UK,1979. 被引量:1
  • 5韩西安.Pythagorean Bézier速端曲线及其等距线[D].西北工业大学,2001. 被引量:1
  • 6Moon H P,Farouki R T.Construction and Shape Analysis of PH Quintic Hermite Interpolants[J].Computer Aided Geometric Design,2001,18(2),93-115. 被引量:1
  • 7陈国栋,王国瑾.三次PH曲线偶的C^1 Hermite插值[J].计算机研究与发展,2002,39(1):110-113. 被引量:7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部