期刊文献+

短时电能质量扰动波形的识别 被引量:3

Short-Time Power Quality Disturbances Waveform Recognition
下载PDF
导出
摘要 提出一种新的基于瞬时无功功率理论和小波-神经网络技术对电能质量进行辨识的方法。首先对各种电能质量信号进行时域和幅值分析,将在幅值上有显著特征的短期电能质量扰动信号识别出来;再对其余的信号进行小波变换,提取与信号频域相关的特征量来表征不同电能质量信号。将这些特征量作为神经网络(ANN)的输入可以实现电能质量的辨识。计算结果表明了该方法的有效性和准确性。 This paper suggests a method to classify short-time power quality using the wavelet transformation and ANN based on instantaneous reactive power theory. To begin with, the power quality signals of various kinds was decomposed in time domain and amplitude,and the signals of short-term power quality disturbance featured on the amplitudes are identified. And then the rest of signals are processed using the wavelet transform, and the features related to frequency band domain extracted are used to indicate the signals of different power qualities, and these features can be used as the input vector of ANN to classify the short-time power quality signals. The efficiency and validity of this method is verified by the calculation results.
出处 《西安理工大学学报》 CAS 2006年第2期150-153,共4页 Journal of Xi'an University of Technology
关键词 瞬时无功功率理论 小波变换 神经网络 分类与识别 短时电能质量扰动 instantaneous reactive power theory wavelet transform neural network classification and identification short-time power quality disturbance
  • 相关文献

参考文献9

二级参考文献37

  • 1邓佑满,张伯明,王洪璞.配电网络重构和电容器投切的综合优化算法[J].电力系统自动化,1996,20(5):5-9. 被引量:26
  • 2玄光男 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000.. 被引量:131
  • 3[1]Angrisani L, Daponte P, Apuzzo M D. A measument method based on the wavelet transform for power quality analysis[J]. IEEE Trans Power Delivery, 1998, 13(4):990-998. 被引量:1
  • 4[2]Huang S J, et al. Application of morlet wavelets to supervise power system disturbances[J]. IEEE Trans Power Delivery, 1999, 14(1):235-243. 被引量:1
  • 5[3]Gaouda A M,et al. Power quality detection and classification using wavelet-multiresolution signal decomposition[J].IEEE Trans. Power Delivery, 1998, 14(4):1469-1476. 被引量:1
  • 6[4]Application of multiresolution signal decomposition for monitoring short-duration variations in distribution systems[J]. IEEE Trans Power Delivery, 2000, 15(2):478-485. 被引量:1
  • 7[5]Santoso S, Powers E J, et al. Power quality disturbance waveform recognition using wavelet-based neural classifier?Part 1: theoretical foundation, Part 2: application[J]. IEEE Trans Power Delivery, 2000, 15(1):222-235. 被引量:1
  • 8[6]Poisson O, Rioual P, Meunier M. Detection and measurement of power quality disturbances using wavelet transform[J].IEEE Trans Power Delivery, 2000, 15(3):1039-1044. 被引量:1
  • 9[7]Karimi M, Mokhtari H, Iravani R. Wavelet based on-Line disturbance detection for power quality applications[J]. IEEE Trans Power Delivery, 2000, 15(4):1212-1220. 被引量:1
  • 10[8]Vetterli M, Herley C, Wavelets and filter banks: theory and design[J]. IEEE Trans Signal Process, 1992, 40(9):2207-2232. 被引量:1

共引文献295

同被引文献34

引证文献3

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部