期刊文献+

一种改进的微粒群优化算法 被引量:23

A Modified Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 提出了一种基于差分进化算子变异的改进微粒群优化算法,为减小陷入局优的可能性,在群体最优信息陷入停滞时引入差分进化算子变异,使算法摆脱局部极优点的束缚,同时又保持前期搜索速度快的特性,提高全局搜索能力。仿真实验表明:与标准微粒群优化算法相比,该文算法的全局收敛性能得到了显著提高,能有效避免微粒群优化算法中的早熟收敛问题。 This paper proposes a modified particle swarm optimization (MPSO) with differential evolution operator mutation. When the optimum information of the warm is stagnant, differential evolution operator mutation is introduced to reduce the possibility of trapping at the local optimum. By adding the mutation operator to the PSO algorithm, the advantaged algorithm can maintain the characteristic of fast speed in the early convergence phase and improve the global search ability. The experimental results indicate that MPSO not only has great advantage of convergence property over PSO, but also can avoid the premature convergence problem effectively.
作者 郑小霞 钱锋
出处 《计算机工程》 CAS CSCD 北大核心 2006年第15期25-27,共3页 Computer Engineering
基金 国家"973"计划基金资助项目(2002CB3122000) 国家自然科学基金资助项目(60074027) 国家"863"计划基金资助项目(2003AA412010)
关键词 微粒群 优化 差分进化 变异 Particle swarm Optimization Differential evolution Mutation
  • 相关文献

参考文献5

  • 1Kennedy J,Eberhart R C.Particle Swarm Optimization[C].Proc.of IEEE Int.Conf.on Neural Networks,Perth,WA,Australia,1995:1942-1948. 被引量:1
  • 2Kennedy J.The Particle Swarm:Social Adaptation of Knowledge[C].Proc.of Int.Conf.Evolutionary Computation,Indianapolis,IN,1997-04:303-308. 被引量:1
  • 3Frans V D B.An Analysis of Particle Swarm Optimizers[D].South Africa:Department of Computer Science,University of Pretoria,2002. 被引量:1
  • 4Zhang W,Xie X.DEPSO:Hybrid Particle Swarm with Differen tial Evolution Operator[C].Proceedings of IEEE International Conference on Systems,Man and Cybernetics,2003:3816-3821. 被引量:1
  • 5Storn R,Price K.Differential Evolution-A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces[R].International Computer Science Institute,Berkley,1995. 被引量:1

同被引文献161

引证文献23

二级引证文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部