期刊文献+

基于矩阵的关联规则增量更新算法 被引量:5

Incremental Updating Algorithm Based on Matrix for Mining Association Rules
下载PDF
导出
摘要 该算法用以处理事务数据库不变而最小支持度发生变化后相应关联规则的更新问题。它在充分利用ABM算法挖掘结果的基础上,不需要重新扫描数据库,也不需要额外地为其分配内存单元就能挖掘出所有新的频繁项目集,实验分析证明了UBM算法的正确性和高效性。 This algorithm has solved the updating problem of how to maintain association rules efficiently when the minimum support is changed among the original transaction database.The algorithm can find all new Large itemsets on the basis of the results of ABM algorithm on condition that it need not scan databases and additional memory units.The experiments have shown the availability and superiority of the new algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第21期169-171,206,共4页 Computer Engineering and Applications
基金 山东省自然科学基金资助项目(编号:Y2003G01)
关键词 数据挖掘 关联规则 频繁项目集 增量更新 Data Mining,association rules,large itemsets,incremental updating
  • 相关文献

参考文献5

二级参考文献17

  • 1[1]Agrawal R. Mining Association Rules Between Sets of Items in Large Database. Washington, DC:Proceedings of ACM SIGMOD Conference on Management of Data, 1993-05:207-216 被引量:1
  • 2[2]Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules.Santiago, Chile: Proceedings of the 20th International Conference on Very Large Databases, 1994-09:487-499 被引量:1
  • 3[3]Cheung D W. Maintenance of Discovered Association Rules in Large Databases:An Incremental Updating Technique. New Orleans,Louisana:Proceedings of the 12th International Conference on Data Engineering,1996:106-114 被引量:1
  • 4[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD International Conference on Management of Date, Washington DC, 1993.207~216 被引量:1
  • 5[2]Agrawal R, Srikant R. Fast algorithm for mining association rules. In: Proceedings of the 20th International Conference on VLDB, Santiago, Chile, 1994. 487~499 被引量:1
  • 6[3]Han J, Kamber M. Data Mining: Concepts and Techniques. Beijing: Higher Education Press, 2001 被引量:1
  • 7[5]Agrawal R, Shafer J C. Parallel mining of association rules:Design, implementation, and experience. IBM Research Report RJ 10004,1996 被引量:1
  • 8[6]Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules. In: Proceedings of the 21th International Conference on VLDB, Zurich, Switzerland, 1995. 432~444 被引量:1
  • 9[7]Hah J, Jian P et al. Mining frequent patterns without candidate generation. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, TX, 2000.1~12 被引量:1
  • 10[8]Cheung D W, Lee S D, Kao B. A general incremental technique for maintaining discovered association rules. In: Proceedings of databases systems for advanced applications, Melbourne, Australia, 1997. 185~194 被引量:1

共引文献306

同被引文献20

  • 1牛小飞,石冰,卢军,吴科.挖掘关联规则的高效ABM算法[J].计算机工程,2004,30(11):118-120. 被引量:16
  • 2Xiu-LiMa,Yun-HaiTong,Shi-WeiTang,Dong-QingYang.Efficient Incremental Maintenance of Frequent Patterns with FP-Tree[J].Journal of Computer Science & Technology,2004,19(6):876-884. 被引量:9
  • 3张师超,张继连,陈峰,倪艾玲.负增量式关联规则更新算法[J].计算机科学,2005,32(9):153-155. 被引量:7
  • 4张健沛,杨悦,刘卓.一种新的关联规则增量式挖掘算法[J].计算机工程,2006,32(23):43-44. 被引量:6
  • 5Cheung D W,Han Jiawei,Ng V,et al.Maintenance of discovered association roles in large database:an incremental updating technique[C]//Proceeding of 12th International Conference on DataEngineering,New Orleans,Louisana, 1996:106-114. 被引量:1
  • 6Cheung D,LEE S,Kao B.A general incremental technique for maintaining discovered association rules[C]//Proceedings of the 5th International Conference on Database Systems for Advanced Applications, Melbourne, Australia, 1997 : 185-194. 被引量:1
  • 7Tan Pang-Ning.Introduction to Data Mining:数据挖掘导论[M].范明,范宏建,译.北京:人民邮电出版社,2006:202-205. 被引量:1
  • 8Agrawal R,Imiefinski T,Swami A.Mining Association Rules Between Sets of Items in Large Database[C]//Proc. of ACM SIGMOD Conf.On Management of Data,1993:207-216. 被引量:1
  • 9Han Jiawei,Kamber M.数据挖掘:概念与技术[M].北京:机械工业出版社,2004-06. 被引量:5
  • 10Agrawal R,Imielinski T,Wami A S.Mining Association Rules Between Sets of Items in Large Databases[].Proc of the ACM SIGM OD Conference on Management of Data.1993 被引量:15

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部