摘要
设∑p为E0={z:0<|z|<1}内解析且形为f(z)=z-p+∑∞n=1anzn-p的p叶函数全体组成的类.利用Dziok-Srivastava算子定义了p叶亚纯函数类∑p的子类Wp,q,s(α1,α),并定义了亚纯多叶函数f(z)的邻域.利用邻域概念建立了函数f(z)的邻域与函数类Wp,q,s(α1,α)之间的包含关系,推出了亚纯P叶函数f(z)属于类Wp,q,s(α1,α)的充分条件,并利用充分条件推出函数类Wp,q,s(α1,α)中满足条件∑∞n=1(n+|n-2α|/2α)Гn(α1)|an|≤1的函数的一些性质.
Let∑p be the class of functions of the form f(z)=z^-P+∞∑n=1anz^n-P which is analytic and p-valent in E0 ={z:0 〈| z |〈 1}. In this paper a new subclass of meromorphic multivalent functions that are defined in E0, is defined by Dziok-Srivastava operator and the neighborhood of meromorphic multivalent function f(z) is defined. In using of the concept of neighborhood, the inclusion relation between the function f(z) and its neighborhood is established, and the sufficient conditions for the functions belonging to the subclass Wpqs(a1 ,a) are derived. Some properties of the functions in the subclass which meet the condition ∞∑n=1n+|n-2a|/2aГ(a1)|an|≤1 have been studied.
出处
《淮海工学院学报(自然科学版)》
CAS
2006年第2期1-3,共3页
Journal of Huaihai Institute of Technology:Natural Sciences Edition
基金
江苏省教育厅自然科学基金资助项目(04KJB110154)