期刊文献+

多孔介质平板通道发展传热中非局部热平衡时的温度分布特征 被引量:5

Temperature Profiles of Local Thermal Nonequilibrium for Thermal Developing Forced Convection in a Porous Medium Parallel Plate Channel
下载PDF
导出
摘要 研究了多孔介质平板通道中,Darcy流体发展传热强迫对流非局部热平衡下,固相骨架和孔隙流体的温度分布特征.考虑流体流动方向的热传导以及固相和流相相互作用的粘性耗散,根据非局部热平衡的两能量方程模型,得到了常壁温度时多孔介质固相骨架温度和孔隙流体温度的解析解.证明了当两相间的热交换系数趋于无穷大时,两能量方程的温度解趋于局部热平衡时一能量方程的温度解.针对不同的无量纲参数,给出了固相和流相的温度分布状态,通过参数研究,揭示了非局部热平衡强迫对流时温度对无量纲参数的依赖关系. Based on the two energy equation model, taking into account viscous dissipation due to the interaction between solid skeleton and pore fluid flow, temperature expressions of the solid skeleton and pore fluid flow were obtained analytically for the thermally developing forced convection in a saturated porous medium parallel plate channel, with walls being at constant temperature. It was proved that the temperatures of the two phases for the local thermal nonequilibrium will approach the temperature derived from the one-energy equation model for the local thermal equilibrium when the heat exchange coefficient goes to infinite. The temperature profiles were shown in figures for different dimensionless parameters and the effects of the parameters on the local thermal nonequilibrium is revealed by the parameter study.
作者 杨骁 刘雪梅
出处 《应用数学和力学》 CSCD 北大核心 2006年第8期978-986,共9页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10272070) 上海市重点学科建设资助项目(Y0103)
关键词 多孔介质 发展传热强迫对流 非局部热平衡 Brinkman数 Biot数 Péclet数 porous medium thermally developing forced convection local thermal nonequilibrium number Blot number Péclet number
  • 相关文献

参考文献16

  • 1de Boer R. Theory of Porous Media : Highlights in the Historical Development and Current State[M]. Berlin, Heidelberg: Springer-Verlag, 2000. 被引量:1
  • 2Voller V R, Peng S. An algorithm for analysis of polymer filling of molds[J]. Poly Eng Science,1995,35(22) : 1758-1765. 被引量:1
  • 3Schrefler B A, Pesavento F. Multiphase flow in deforming porous material[J]. Computer and Geotechnics, 2004,31 (3) : 237-250. 被引量:1
  • 4Spiga G, Spiga M. A rigorous solution to a heat transfer two-phase model in porous media and packed beds[J]. Heat Mass Transfer, 1981,24(2) :355-364. 被引量:1
  • 5Schrefler B A. Mechanics and thermodynamics of saturated/unsaturated porous materials and quantative solutions[J]. Appl Mech Rev ,2002,55(4) :351-388. 被引量:1
  • 6Nield D A, Bejan A. Convection in Porous Media[M].second Ed. New York: Spring-Veriag, 1999. 被引量:1
  • 7Haji-Sheilkh A, Vafai K. Analysis of flow and heat transfer in porous media imbedded inside various-shaped ducts[J]. Heat Mass Transfer,2004,47(8/9) : 1889-1905. 被引量:1
  • 8Simacek P, Advani S G. An analytic solution for the temperature distribution in flow Utrougn porous media in narrow gaps( Ⅰ )-linear injection[J]. Heat Mass Transfer,2001,38(1/2) :25-33. 被引量:1
  • 9Kuznetsov A V, MING Xiong, Nield D A. Thermally developing forced convection in a porous medium: circular duct with walls at constant temperature, with longitudinal conduction and viscous dissipation effects[J]. Transport in Porous Media,2003,53(3) :331-345. 被引量:1
  • 10Nield D A, Kuznetsov A V. Thermally developing forced convection in a channel occupied by aporous medium saturated by a non-Newtonian fluid[J]. Heat Mass Transfer, 20(0,48 (6) : 1214-1218. 被引量:1

二级参考文献4

  • 1I. Edelman,K. Wilmanski.Asymptotic analysis of surface waves at vacuum/porous medium and liquid/porous medium interfaces[J].Continuum Mechanics and Thermodynamics.2002(1) 被引量:1
  • 2W. Ehlers,B. Markert.On the viscoelastic behaviour of fluid-saturated porous materials[J].Granular Matter.2000(3) 被引量:1
  • 3Stefan Breuer.Quasi-Static and Dynamic Behavior of Saturated Porous Media with Incompressible Constituents[J].Transport in Porous Media (-).1999(1-3) 被引量:1
  • 4Prof. Dr. C. Pecker,Prof. Dr. H. Deresiewicz.Thermal effects on wave propagation in liquid-filled porous media[J].Acta Mechanica (-).1973(1-2) 被引量:1

共引文献21

同被引文献42

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部