期刊文献+

一个基于网格服务的分布式关联规则挖掘算法 被引量:9

Distributed Algorithm for Mining Association Rules with the Grid Services
下载PDF
导出
摘要 分布式关联规则挖掘在知识发现中占着不可忽视的地位,在以往分布式算法的基础上提出了一个加优先权值的PDDM算法,并将修改后的算法与抽样算法、知识网格的思想相结合形成一个GDS算法.GDS算法改善了以往分布式算法中通信量过载,算法难于扩展的问题,而且只扫描一遍数据库,减缓了大数据集挖掘中的I/O问题.理论分析和试验结果表明提出的算法是有效可行的. Distributed data mining for association rules plays an important role in knowledge discovery. This paper presents a PDDM algorithm with priority on the basic of previous algorithm and a GDS algorithm which combines PDDM algorithm with the Sampling algorithm and Knowledge Grid's idea. The GDS algorithm, which improves the scalability and I/O problem effectively, decreases the communication of previous algorithm, and scans the database single time. Theory analysis and experimental results show the feasibility and effectiveness of the algorithm.
作者 赵辉 王黎明
出处 《小型微型计算机系统》 CSCD 北大核心 2006年第8期1544-1548,共5页 Journal of Chinese Computer Systems
关键词 数据挖掘 分布式 关联规则 抽样算法 知识网格 data mining distributed association rule sampling algorithm knowledge grid
  • 相关文献

参考文献12

  • 1Xu Zhi-wei, Bu Guan-Ying. A theorem on grid access control[C]. In: Proc. of J. Comput. Sci. & Technol. , July 2003, 18(4):515-522. 被引量:1
  • 2Domenico Talia. Tools and services for distributed knowledge discovery on grids [C]. In HPC 2002 Cetraro, Italy, June, 2002:24-27. 被引量:1
  • 3Hai Zhuge. China's e-science knowledge grid environment[C].In: Proc. of the IEEE Computer Society, February 2004: 13-17. 被引量:1
  • 4Cannataro M, Talia D. Knowledge grid: an architecture for distrubuted knowledge discovery[C]. In: CACM, January 2003, 46(1):89-93. 被引量:1
  • 5Agrawal R, Sharer J. Parallel mining of association rules[J].IEEE Transactions on Knowledge and Data Engineering, 1996,8(6):962-969. 被引量:1
  • 6Cheung D W, Han J, Ng V. A fast distributed algorithm for mining association rules[C]. In: Proc. of 1996 Int'l Conf. on Parallel and Distributed Information Systems, Miami Beach,Florida, December 1996: 31-44. 被引量:1
  • 7Schuster A, Wolff R. Communication-efficient distributed mining of association rules[C]. In: Proe. of the ACM SIGMOD Int'1. Conference on Management of Data, Santa Barbara, California May,2001:473-484. 被引量:1
  • 8Toivonen H. Sampling large databases for association rules[C]. In: Proceeding of the 22nd VLDB Conference Mumbai (Bombay), India, 1996,134-145. 被引量:1
  • 9Brin S, Motwani R, Ullman J D, et al. Dynamic itemset counting and implication rules for market basket data[C]. In ACM SIGMOD Int'l Conference On the Management of Data, June 1997: 255-264. 被引量:1
  • 10Jiawei Han, Jianpei. Mining frequent patterns without candidate generation: a frequent-pattern tree approach[C]. In: Proc. of the Data Mining and Knowledge Discovery, 8, 2004: 53-87. 被引量:1

同被引文献75

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部