期刊文献+

不可压饱和多孔弹性梁、杆动力响应的数学模型 被引量:26

MATHEMATICAL MODEL FOR DYNAMICS OF INCOMPRESSIBLE SATURATED POROELASTIC BEAM AND ROD~
下载PDF
导出
摘要 基于多孔介质理论,首先建立了饱和多孔弹性杆件弯曲与轴向变形时动力响应的数学模型.其次,基于多孔弹性梁弯曲变形的数学模型,利用Laplace变换,分析了两端可渗透的饱和多孔弹性悬臂梁在自由端受阶梯载荷作用下的动静力响应,给出了梁弯曲时挠度、弯矩以及孔隙流体压力等效力偶等物理量随时间的响应曲线.发现不可压多孔弹性梁的拟静态响应亦存在Mandel-Cryer现象,多孔弹性梁的挠度具有与粘弹性梁挠度类似的蠕变特征,然而,其应力响应不同于粘弹性梁,随着时间的增加,梁拟静态响应的弯矩逐渐增加,并达到一个稳态值.这些结果有助于揭示植物根茎等力学行为的机理. Based on the theory of porous media,the,mathematical models for dynamics of the fluid-saturated poroelastic beams and rods are established. Then the dynamical/ quasi-static behavior of the poroelastic cantilever beam subjected to a step load at the free end,with permeable at two ends,is investigated by the Laplace transformation. The variations of the deflections,bending moments of the poroelastic beam and the equivalent couples of the pore fluid pressure are analyzed for different material parameters. It can be seen that the Mandel-Cryer phenomenon also occurs in the quasi-static deformations of the poroelastic cantilever beam. Furthermore,the deflections of the poroelastic beam possess the creep behavior similar to deflections of viscoelastic beam. Nevertheless,the bending moment of the quasi-static poroelastic cantilever beam is increased with time and finally approaches to a steady value. This is different from the behavior of the bending moment of the viscoelastic beam. The results presented here are helpful for revealing the mechanism of the mechanical behavior of roots and stems of plants.
作者 杨骁 李丽
出处 《固体力学学报》 CAS CSCD 北大核心 2006年第2期159-166,共8页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金(10272070) 上海市重点学科建设项目(Y0103)资助
关键词 多孔介质理论 多孔弹性杆件 动静力响应 数学模型 LAPLACE变换 Theory of porous media,poroelastic beam and rod,dynamical/quasi-static behavior,mathematical model, Laplace transformation
  • 相关文献

参考文献1

二级参考文献20

  • 1Biot M A. General theory of three-dimensional consolidation. J Appl Phys, 1941, 12:155 - 164. 被引量:1
  • 2Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous Media. I Low Frequency Range, J Acoust Soc Aml, 1956, 28:168 - 178. 被引量:1
  • 3Bowen RM. Incompressible porous media models by use of the theory of mixtures. Int J Engng Sci, 1980, 18:1129 -1148. 被引量:1
  • 4Bowen R M. Compressible porous media models by use of the theory of mixtures. Int J Engng Sci, 1982, 20:697-735. 被引量:1
  • 5De Boer R. Highlights in the historical development of the porous media theory -toward a consistent macroscopic theory. Appl Mech Rev, 1996, 49:201 - 262. 被引量:1
  • 6De Boer R. Contemporary progress in porous media theory. Appl Mech Rev, 2000, 53:323 - 370. 被引量:1
  • 7De Boer R, Ehlers W, Liu Z. One-dimensional transient wave propagation in fluid-saturated incompressible porous media. Archive Appl Mech, 1993, 63:59 - 72. 被引量:1
  • 8Liu Z, De Boer R. Dispersion and attenuation of surface waves in a fluid-saturated porous media. Transport in Porous Media, 1997, 29:207 - 223. 被引量:1
  • 9Breuer S. Reflection and refraction of longitudinal waves in a fluid-saturated porous solid, in Problems of Environmental and Damage Mechanics (eds Kosinski W, de Boer R and Gross D), IPPT PAN. Wamzawa,Proceedings of SoilMec'96 Conference, Mierki, September 9 - 14, 1996, Poland, 27 - 37. 被引量:1
  • 10Breuer S. Quasi-static and dynamic behavior of saturated porous media with incompressible constituents. Transport in Porous Media, 1999, 34:285 - 303. 被引量:1

共引文献13

同被引文献186

引证文献26

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部