期刊文献+

一种面向容侵系统的并行错误检测方法——PBL方法 被引量:3

The PBL Method: A Novel Parallel Error Detection Method for Intrusion Tolerance Systems
下载PDF
导出
摘要 面向入侵容忍的错误检测是系统安全最前沿的研究热点之一,它是保障容侵系统无边界退化、提供全部或降级服务的核心技术·分布式复杂网络环境中,错误的并发性和噪声信息的干扰使传统错误检测方法不再适用,在研究目前错误检测方法的基础上,结合容侵系统特性,提出了一种基于改进的贝叶斯并行学习的并行错误检测方法——PBL方法·该方法既能有效检测分布式环境下的并发错误,又能排除噪声数据的干扰·对PBL方法实现的关键问题进行了详细的讨论和分析· One of the most advanced research problems in intrusion tolerance systems (ITS) is error detection, which has become another essential technique in system security to prevent the intrusion from generating a system failure. A parallel error detection method named PBL for ITS, which is based on distributed Bayesian learning, is proposed in this paper. This method is particularly suitable for detecting errors with distributed sources. The PBL method not only is useful in detecting errors in the distributed network environment, but also can be used to enhance noise tolerant ability of ITS. Some key problems of the PBL method in detail are also discussed.
作者 李庆华 赵峰
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第8期1411-1416,共6页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60273075)~~
关键词 入侵容忍 错误检测 并行 系统安全 intrusion tolerance error detection parallel system security
  • 相关文献

参考文献13

  • 1P Verissimo, N F Neves, M Correia. Intrusion-tolerant architectures: Concepts and design[R]. Department of Computer Science, University of Lisboa, Tech Rep: DI/FCUL TR03-5, 2003 被引量:1
  • 2M Dacier. Design of an intrusion-tolerant intrusion detection system [R]. Project MAFTIA, Tech Rep: IST-1999-11583,2002 被引量:1
  • 3M Subhasish, J M Edward. Diversity techniques for concurrent error detection [R]. Project DARPA, Tech. Rep. : DABT63-97-C-002, 2001 被引量:1
  • 4Z Zhou, H Meng. A two-level schema for detecting recognition errors [C]. The 8th lnt'l Conf on Spoken Language Processing, Jeju, Korea, 2004 被引量:1
  • 5G Tur, D Hakkani-Tur, G Riccardi. Extending boosting for call classification using word confusion networks [C]. The 2004 IEEE Int'l Conf on Acoustics, Speech, and Signal Processing,Montreal, Canada, 2004 被引量:1
  • 6Lina Zhou, Yongmei Shi, Jinjuan Feng. Data mining for detecting errors in dictation speech recognition [J ]. IEEE Trans on Speech and Audio Processing, 2005, 5(13) : 681-690 被引量:1
  • 7Cristian Constantinescu. Experimental evaluation of errordetection mechanisms [J]. IEEE Trans on Reliability, 2003, 52(1): 53-58 被引量:1
  • 8J Feng, A Sears. Using confidence scores to improve hands-free speech-based recognition error specification [J ]. ACM Trans on Computer-Human Interaction, 2004, 4( 11 ) : 329-356 被引量:1
  • 9J Chen, R Greiner, J Kelly, et al. Learning Bayesian networks from data: An information-theory based approach [J ]. Artificial Intelligence, 2002, 137(1/2): 43-90 被引量:1
  • 10R Chen, K Sivakumar, H Kargupta. An approach to online Bayesian learning from multiple data streams [C]. The Workshop on Mobile and Distributed Data Mining, Freiburg,Germany, 2001 被引量:1

同被引文献66

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部