期刊文献+

纤维分布不均匀的层压板表征与弯曲性能研究 被引量:3

CHARACTERIZATION AND FLEXURAL PROPERTIES OF COMPOSITE LAMINATES WITH NONUNIFORM FIBER DISTRIBUTION
下载PDF
导出
摘要 基于MATLAB图像处理技术,本文开发了用于测定复合材料纤维分布状态的计算机图像处理程序。以T300/BMP316复合材料为对象,采用三点弯曲法研究了纤维分布均匀性对复合材料弯曲性能的影响,用有限元方法分析了纤维分布不均匀的复合材料弯曲变形时的应力分布,提出了运用抗弯系数R评价其性能。结果表明,基于MATLAB图象处理技术可快速准确地测定纤维增强复合材料的纤维密实指数,确定纤维的分布状态。纤维分布不均的T300/BMP316复合材料弯曲性能受纤维分布方式和载荷方向的影响极大,抗弯系数R反映了纤维分布与性能的关系。 A computer program to determine the fiber distribuionn is developed based on MATLAB image processing technology. The effect of fiber distribution uniformity on the flexural properties of T300/BMP316 unidirectional composite laminates is studied using bending test under three-point loading. The finite element analysis is performed to investigate the stress distribution of the deformed model structure with nonuniform fiber distribution. The flexural coeffcient R is put forward. The results show that the program can quickly and correctly determine the fiber compaction index of composite laminates and flexural properties are greatly affected by the fiber distribution type and load direction. The flexural coefficient R can be used to justify the properties of the composite laminates with nonuniform fiber distribution.
出处 《玻璃钢/复合材料》 CAS CSCD 北大核心 2006年第4期7-12,共6页 Fiber Reinforced Plastics/Composites
基金 国家973项目(2003CB615602)
关键词 纤维分布 弯曲性能 抗弯系数 MATLAB fiber distribution flexural properties flexural coefficient MATLAB
  • 相关文献

参考文献6

二级参考文献16

  • 1杜善义 王彪.复合材料力学性能[M].北京:科学出版社,1998.. 被引量:1
  • 2[9]White J M, Rohrer G D. Image thresholding for optical character recognition and other applications requiring character image extraction [J]. IBM Journal of Research and Development, 1983,27(4) :400 -411. 被引量:1
  • 3[1]Dong L J, Yu G. An optimization-based approach to image binarization, CIT ( 2004 ) [ A ]. The 4th International Conference on Conputer and Information Technology [C].Wuhan, 2004, (to appear). 被引量:1
  • 4[2]Chang J S, Liao M H Y, Hor M K. New automatic multilevel thresholding technique for segmentation of thermal images[J]. Image Vision and Computing, 1997, 15:23 -34. 被引量:1
  • 5[3]Sezgin M,Sankur B. Comparison of thresholding methods for non-destructive testing appplications [A]. IEEE ICIP'2001[C]. Greece, 2001. 被引量:1
  • 6[4]Le S U, Chung S Y, Park R H. A comparative performance study of several global thresholding techniques for segmentation[J]. Graphical Models and Image Processing, 1990,52:171- 190. 被引量:1
  • 7[5]Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on System, Man and Cybernetics, 1979,9(1):62-66. 被引量:1
  • 8[6]Rosenfeld A, Torre D E L. Histogram concavity analyses as an aid in threshold selection [J]. IEEE Transactions on System,Man and Cybernetics, 1983,SMC-13:231 - 235. 被引量:1
  • 9[7]Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram [ J ]. Graphical Models and Image Processing,1985,29: 273 - 285. 被引量:1
  • 10[8]Pal N R, Pal S K. Entropic thresholding [J]. Signal Processing, 1989,16:97- 108. 被引量:1

共引文献23

同被引文献28

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部