摘要
以含底摩阻能量耗散项的时间关联型缓坡方程为控制方程,建立了一种具有二阶精度的数值离散格式.该格式对时间导数使用Euler预测-校正格式离散;对空间导数使用中心差分格式离散.基于统一边界条件表达式,对边界条件进行处理.数值解与物理模型实验值吻合较好,表明数值模拟模型可以有效地模拟波面随时间和空间的变化以及波高的空间分布.
A numerical model was proposed with the time-dependent mild-slope equation including the bottom dissipation term used as the governing equations. In the model, the Euler predictor-corrector scheme is used to discretize the time derivatives, and the central difference scheme is used to discretize the spatial derivatives, thus leading to both time and spatial derivatives to second-order accuracy. Based on the general boundary conditions, the boundary conditions for the present model are treated. The calculated results are in good agreement with the experimental ones, which indicates that the numerical model can be used to simulate the time and spatial variation of surface elevation and the distribution of wave heights.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2006年第6期1050-1054,共5页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金资助项目(40106008)
国家重点基础研究发展规划(973)项目(2002CB412403)
华东师范大学河口海岸国家重点实验室开放基金项目
关键词
时间关联型
缓坡方程
数值方法
边界条件
time-dependent
mild-slope equation
numerical method
boundary conditions