期刊文献+

一种求解时间关联型缓坡方程的数值方法 被引量:4

A Numerical Scheme of the Time-Dependent Mild-Slope Equation
下载PDF
导出
摘要 以含底摩阻能量耗散项的时间关联型缓坡方程为控制方程,建立了一种具有二阶精度的数值离散格式.该格式对时间导数使用Euler预测-校正格式离散;对空间导数使用中心差分格式离散.基于统一边界条件表达式,对边界条件进行处理.数值解与物理模型实验值吻合较好,表明数值模拟模型可以有效地模拟波面随时间和空间的变化以及波高的空间分布. A numerical model was proposed with the time-dependent mild-slope equation including the bottom dissipation term used as the governing equations. In the model, the Euler predictor-corrector scheme is used to discretize the time derivatives, and the central difference scheme is used to discretize the spatial derivatives, thus leading to both time and spatial derivatives to second-order accuracy. Based on the general boundary conditions, the boundary conditions for the present model are treated. The calculated results are in good agreement with the experimental ones, which indicates that the numerical model can be used to simulate the time and spatial variation of surface elevation and the distribution of wave heights.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2006年第6期1050-1054,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(40106008) 国家重点基础研究发展规划(973)项目(2002CB412403) 华东师范大学河口海岸国家重点实验室开放基金项目
关键词 时间关联型 缓坡方程 数值方法 边界条件 time-dependent mild-slope equation numerical method boundary conditions
  • 相关文献

参考文献5

二级参考文献23

  • 1刘卓,曾庆存.自适应网格在大气海洋问题中的初步应用[J].大气科学,1994,18(6):641-648. 被引量:20
  • 2张洪生.近岸水域波浪传播的数学模型[R].上海:华东师范大学,2002.. 被引量:1
  • 3洪广文 冯卫兵 夏期颐 等.缓变水深和流场水域波浪折射、绕射数值模拟[A]..第八届全国海岸工程学术讨论会论文集(下)[C].北京:海洋出版社,1997.703-714. 被引量:1
  • 4[1]Berkhoff, J. C. W., 1972. Computation of combined refraction-diffraction. Proc. 13th Coastal Eng. Conf., Vancouver,Canada, ASCE, 1(1973), 471 ~ 490. 被引量:1
  • 5[2]Berkhoff, J. C. W., Booij, N. and Radder, A. C., 1982. Verification of numerical wave propagation models for simple harmonic water waves, Coastal Eng., 6, 255 ~ 279. 被引量:1
  • 6[3]Copeland, G. J. M., 1985. A practical alternative to the mild-slope wave equation, Coastal Eng., 9, 125~ 149. 被引量:1
  • 7[4]Ebersole, B. A., 1985. Refraction-diffraction model for linear water waves, J. Waterway Port Coastal Ocean Eng., ASCE, 111, 939~ 953. 被引量:1
  • 8[5]Ito, Y. and Tanimoto, K., 1972. A method of numerical analysis of wave propagation -application of wave refraction and diffraction, Proc. 13th Conf. Coastal Eng., Vancouver, Canada. ASCE, Ch. 26. 被引量:1
  • 9[6]Kirby, J. T. and Dalrymple, R. A., 1984. Verification of a parabolic equation for propagation of weakly- nonlinear waves, Coastal Eng., 8, 219~ 232. 被引量:1
  • 10[7]Kirby, J. T. and Dalrymple, R. A., 1986. An approximate model for nonlinear dispersion in monochromatic wave propagation models, Coastal Eng., 9, 545~ 561. 被引量:1

共引文献46

同被引文献26

  • 1潘军宁,左其华,王红川.Efficient Numerical Solution of the Modified Mild-Slope Equation[J].China Ocean Engineering,2000,15(2):161-174. 被引量:12
  • 2Hong Guangwen Professor, Research Institute of Coastal and Ocean Engineering, Hohai University, 1 Xikang Road, Nanjing 210024.Mathematical Models for Combined Refraction-Diffraction of Waves on Non-Uniform Current and Depth[J].China Ocean Engineering,1996,11(4):433-454. 被引量:35
  • 3LARSEN J,DANCY H.Open boundaries in short wave simulations--A new approach[J].Coastal Engineering,1983,7:285-297. 被引量:1
  • 4WEI G,KIRBY J T,SINHA A.Generation of waves in Boussinesq models using a source function method[J].Coastal Engineering,1999,36:271-299. 被引量:1
  • 5CHAWLA A,KIRBY J T.A source function method for generation of waves on currents in Boussinesq models[J].Applied Ocean Research,2000,22:75-83. 被引量:1
  • 6SOMMERFELD A.Partial Differential Equation,Lect-ures in Theoretical Physics.Vol.6[M].Academic Press.1949. 被引量:1
  • 7OHYAMA T,NADAOKA K.Transformation of a nonlinear wave train passing over a submerged shelf without breaking[J].Coastal Engineering,1994,24:1-22. 被引量:1
  • 8OHYAMA T,KIOKA W TADA A.Applicability of numerical models to nonlinear dispersive waves[J].Coastal Engineering,1995,24:297-313. 被引量:1
  • 9MEI C C,STIASSNIE M,YUE D K P.Theory and applications of ocean surface waves[J].In:Advanced Series on Ocean Engineering,(edited by P.L.-F.Liu),World Scientific.2005,23:133. 被引量:1
  • 10NWOGU O.Alternative form of boussinesq equations for nearshore wave propagation[J].J.Waterway,Port,Coastal and Ocean Eng.,ASCE,1993,119(6):618-638. 被引量:1

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部