摘要
以Michael选择定理为基础,证明了有限维空间中集值映射及其相邻导数存在连续选择的充分条件,并指出在此条件下,可得到相应的连续选择,使2个连续选择之间也具有相同的导数关系.
It was discussed that the existence of continuous selections of set-valued mappings and its derivatives in finite dimensional normed vector spaces. A sufficient conditions is obtained for the existence of their continuous selections.
出处
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第4期289-292,共4页
Journal of Yunnan University(Natural Sciences Edition)
基金
国家自然科学基金资助项目(10361008)
云南大学科研基金资助项目(2004Z009C)
关键词
相依导数
相邻导数
集值映射
连续选择
LIPSCHITZ映射
contingent derivative
intermediate derivative
set-valued mapping
continuous selection
Lips-ehitz mapping