期刊文献+

基于K-L变换的两传感器图像自动配准 被引量:2

Automatic bi-sensor image registration based on K-L transformation
下载PDF
导出
摘要 基于合成孔径雷达(SAR)图像和光学图像间的变形可用仿射变换来近似,提出了一种SAR图像和光学图像自动配准的方案。对分割后的图像进行KL变换得到两幅图像的主分量与坐标轴之间的关系,从而得出两幅图像的角度关系,接着,利用旋转后图像的横纵象素范围的比值和前景重心偏移值得到仿射变换的缩放和平移参数,最后再利用二值图像相关对仿射变换的结果图像进行精配,从而实现较高精度的图像配准。实验结果表明,在满足精度要求的情况下,本方法可以自动完成具有明显方向性和较大前景目标图像的配准任务。 Since the distortion between synthetic aperture radar (SAR) and optical images is almost an affine transform. In this paper, K-L transformation is applied on segmented images to determine the relationship between the principal components of both images and the coordinate, thus the rotational angle between images is acquired. Then the ratio of extent in vertical and horizontal directions and the centroids position of foreground area are used to determine the scaling and translational parameters respectively. Finally, the affine-transformed result is refined by binary image correlation to achieve high precise image registration. Experimental results indicated that this method can perform automatic registration under precision acquirement especially for images with orientation and large foreground area.
作者 余翔宇 孙洪
出处 《电波科学学报》 EI CSCD 北大核心 2006年第3期416-421,共6页 Chinese Journal of Radio Science
基金 国家自然科学基金资助项目(60072041 40376051)
关键词 合成孔径雷达 图像配准 仿射变换 K-L变换 synthetic aperture radar, image registration, affine transform, K-L transform
  • 相关文献

参考文献3

二级参考文献16

  • 1[1]Oliver C, Quegan S. Understanding synthetic aperture radar images [M]. Artech House Inc., 685 Canton Street, Norwood, MA 02062, 1998. 被引量:1
  • 2[2]Hervet E, Fjortoft R MarthonP et al.. Comparison of wavelet-based and statistical speckle Filters[A]. In: Proc. SAR Image Analysis, Modelling and Techniques III, SPIE[C], Barcelona, Spain, September 1998:21~25. 被引量:1
  • 3[3]Hong Sun, Henri Maitre, and Bao Guan.Turbo Iterative technique for SAR image processing [A]. 2002 International Symposium on Information Theory and Its Applications (ISITA2002)[C]. 2002: 395~398. 被引量:1
  • 4[4]A Lopes, E Nezry, R Trouzi et al.. Maximum a posteriori speckle filtering and first order texture models in sar images[A]. Geoscience and Remote Sensing Symposium, 1990. IGARSS'90[C]. Remote Sensing Science for the Nineties. 10th Annual International, 1990. 被引量:1
  • 5[5]S Foucher, G Benie, J Boucher. Multiscale MAP Filtering of SAR Images[J]. IEEE, Trans. Image Processing, 2001,10(1):49~59. 被引量:1
  • 6[6]D Donoho. De-noising by Soft-Thresholding[J]. IEEE, Trans. Information Theory, 1995,41(3):613~627. 被引量:1
  • 7[7]R, R, Coifman, D,L,Donoho. Translation invariant de-noising[A]. In: Wavelets in Statistics of Lecture Notes in statistics 103[C]. New York: Springer-Verlag, 1994:125~150. 被引量:1
  • 8[8]A Bijaoui, Yanling Fang, Y Bobichon, et al.. The Analysis of SAR images by multiscale methods[A]. Image Processing, 1996. Proceedings, International Conference[C] , Lausanne, Switzerland vol 3 , 1996: 895 ~898. 被引量:1
  • 9[1]T D Ross, J J Bradley, L J Hudson, et al.. SAR ATR-So what′s the problem? -an MSTAR perspective, 1999, sPIEls 13th Annual International Symposium on AeroSense, Algorithms for SAR Imagery VI,Paper 3721~67 被引量:1
  • 10[2]L M Novak,G J Owirka, W S. Brower. Performance of 10-and 20-Target MSE Classfiers[J]. IEEE Trans.on Aerospace and Electronic Systems. 2000, 36 (4):1279~1289. 被引量:1

共引文献19

同被引文献31

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部