期刊文献+

湿法水解制备可见光催化剂N/TiO_2 被引量:8

Preparation of Visible-light Photocatalyst N/TiO_2 by Wet Hydrolyzation Method
下载PDF
导出
摘要 The N/TiO2 was prepared by wet hydrolyzation method. The photocatalytic decomposition of benzoic acid solution was carried out under simulated sun light; the photocatalytic activity was 2.47 times of TiO2. The products were characterized by XRD, SPS, EFISPS and XPS, respectively. The results of XRD showed that the N could restrain the crystallization transformation of TiO2 from anatase to rutile. The N/TiO2 was still n-type semiconductor, and the absorbance wavelength appeared red-shifted by N-doping. The band gap of N/TiO2 was decreased to 2.7 eV. The amount of doped-N is about 0.94at.%. The binding energy of N1s are 396.62 eV (Ti-N bonds, β-N) and 400.87 eV (N-N bonds, γ-N2), respectively, and the photocatalytic activity of N/TiO2 under visible light is related to the β-N. The N atoms replace the O of the TiO2 and form the Ti-N bonding. The N/TiO2 was prepared by wet hydrolyzation method. The photocatalytic decomposition of benzoic acid solution was carried out under simulated sun light; the photocatalytic activity was 2.47 times of TiO2. The products were characterized by XRD, SPS, EFISPS and XPS, respectively. The results of XRD showed that the N could restrain the crystallization transformation of TiO2 from anatase to rutile. The N/TiO2 was still n-type semiconductor, and the absorbance wavelength appeared red-shifted by N-doping. The band gap of N/TiO2 was decreased to 2.7 eV. The amount of doped-N is about 0.94at.%. The binding energy of Nls are 396.62 eV (Ti-N bonds,β-N) and 400.87 eV (N-N bonds, y-N2), respectively, and the photocatalytic activity of N/TiO2 under visible light is related to the β-N. The N atoms replace the O of the TiO2 and form the Ti-N bonding.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2006年第7期1349-1353,共5页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金资助项目(No.50378027)
关键词 湿法水解 光催化 可见光 氮掺杂 wet hydrolyzation method photocatalytic visible-light N-doped
  • 相关文献

参考文献18

  • 1Michael R H,Scot T M,Wonyong C,et al.Chem.Rev.,1995,95:69~96 被引量:1
  • 2Ulrich S,Detlef B,Juan J T,et al.J.Photochem.Photobiol.A.,2002,148:247~255 被引量:1
  • 3Yamakata A,Ishibashi T A,Onishi H.J.Photochem.Photobiol.A.,2003,160:33~36 被引量:1
  • 4Kang M G,Park N G,Park Y J,et al.Sol.Energ.Mate.Sol.C,2003,75:475~479 被引量:1
  • 5Dhanalakshmi K B,Latha S,Anadan S,et al.Int.J.Hydrogen Energ.,2001,26:669~674 被引量:1
  • 6Bandara J,Hadapangoda C C,Jayasekera W G.Appl.Catal.B,2004,50:83~88 被引量:1
  • 7Asahi R,Morikawa T,Ohwaki T,et al.Science,2001,293:269~271 被引量:1
  • 8Mokawa T,Asahi R,Ohwaki T,et al.Jpn.J.Appl.Phys.,2001,40:561~563 被引量:1
  • 9Yin S,Yamaki H,Komatsu M,et al.J.Mater.Chem.,2003,13:2996~3001 被引量:1
  • 10Sun D Z,Chen S,Jong S C,et al.J.Photochem.Photobiol.A,2005,81:352~357 被引量:1

同被引文献117

引证文献8

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部