摘要
Internet的快速增长导致了对个性化服务需求急剧增加。该文通过分析个性化挖掘的特点,提出了基于时效性的Web页面个性化推荐模型。该模型的挖掘算法在FP-Tree的存储结构上加入时效价值系数,并进行增量挖掘。通过实验证明,该模型挖掘出来的信息,能够更好地符合用户的真实需求。
The idea of time-validity is proposed based on the analysis of characteristics of Web pageviews association rules for personalized recommendation. A model of mining association rules for personalized recommendation. A new interest-measure called time-validity for rules is based on this model, which allows for increasable mining and supports more user-interaction in the optimized rule-mining process.
出处
《计算机工程》
EI
CAS
CSCD
北大核心
2006年第13期80-81,99,共3页
Computer Engineering
基金
国家"863"计划基金资助项目"MES为基础的数字油田基础研究"(2003AA412020)
关键词
WEB挖掘
个性化推荐模型
时效性
Web mining
Personalization recommendation model
Time-validity