期刊文献+

基于时效性的Web页面个性化推荐模型的研究 被引量:6

Web Pageviews for Personalized Recommendation Model Based on Time-validity
下载PDF
导出
摘要 Internet的快速增长导致了对个性化服务需求急剧增加。该文通过分析个性化挖掘的特点,提出了基于时效性的Web页面个性化推荐模型。该模型的挖掘算法在FP-Tree的存储结构上加入时效价值系数,并进行增量挖掘。通过实验证明,该模型挖掘出来的信息,能够更好地符合用户的真实需求。 The idea of time-validity is proposed based on the analysis of characteristics of Web pageviews association rules for personalized recommendation. A model of mining association rules for personalized recommendation. A new interest-measure called time-validity for rules is based on this model, which allows for increasable mining and supports more user-interaction in the optimized rule-mining process.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第13期80-81,99,共3页 Computer Engineering
基金 国家"863"计划基金资助项目"MES为基础的数字油田基础研究"(2003AA412020)
关键词 WEB挖掘 个性化推荐模型 时效性 Web mining Personalization recommendation model Time-validity
  • 相关文献

参考文献12

  • 1Dean J,Henzinger M R.Finding Related Pages in the World Wide Web[C].Proceedings of the 8th International World Wide Web Conference,Toronto,Cannada,1999-05:389-401. 被引量:1
  • 2Kleinberg J M.Authoritative Sources in a Hyperlinked Environment[C].Proc.of 9th ACM-SIAM Symposium on Discrete Algorithms,1998. 被引量:1
  • 3Fink J,Kobsa A,Nill A.User-oriented Adaptivity and Adaptability in the AVANTI[Z].Microsoft Usability Group,Redmond,Washington,USA,1999. 被引量:1
  • 4Agrawal R,Imielinski T,Swani A.Mining Association Rules Between Sets of Items in Lare Databases[C].Proceedings of ACM SIGMOD Coference on Managerment of Data,1993:207-216. 被引量:1
  • 5Han J,Kamber M.Data Mining[M].Concepts and Techniques.Beijing:China Machine Press,2001. 被引量:1
  • 6Movasher B,Cooley R,Srivastava J.Automatic Personalization Based on Web Usage Mining[J].Communications of the ACM,2000,43(8):142-151. 被引量:1
  • 7Movasher B,Dai H,Luo T,et al.Efficient Personalization Based on Association Rule Disvoery Form Web Usage Data[C].Proc.of the 3rd Int Workshop on Web Information and Data Managerment.New York:ACM Press,2001:9-15. 被引量:1
  • 8Lin W,Alare S A,Ruiz C.Efficient Adaptive Support Association Rule Mining for Recommender Systems[J].Data Mining and Knowledge Discovery,2002,6(1):83-105. 被引量:1
  • 9Harms,Sherri K,Deogun,et al.Discovering Sequential Association Rules with Constraints and Time Lags in Multiple Sequences[J].Journal of Intelligent Information Systems,2004,22(1):7-22. 被引量:1
  • 10Harms,Sherri K,Deogun,et al.Sequential Association Rule Mining with Time Lags Lecture Notes in Computer Science[C].Proceedings of the 13^th International Symposium on Foundations of Intelligent Systems,2002:432-441. 被引量:1

二级参考文献20

  • 1HAN J, PEI J, YIN Y. Mining Frequent patterns without candidate generation[A]. Proc. 2000 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'00) [ C], May 2000. 1 - 12. 被引量:1
  • 2AGRAWAL R , IMIELINSKI T , SWAMI A . Mining association rules between sets of items in large databases[ A]. Proc of the ACM SIGMOD Conference on Management of Data[ C]. Washington D C, May 1993. 被引量:1
  • 3BRIN S, MOTWANI R, ULLMAN J, et al. Dynamic Itemset Counting and Implication Rules for Market Basket Data[ A]. Proceedings of ACM SIGMOD International conference on Management of Data[ C], 1997. 255 -264. 被引量:1
  • 4TSUR D, ULLMAN J , AB1TEBOUL S , et al. Query Flocks : A Generalization of Association - Rule Mining[ A]. Proceedings of ACM SIGMOD International conference on Management of Data[ C],1998.1 - 12. 被引量:1
  • 5HIDBER C . Online Association Rule Mining [ A ] . Proceedings of ACM SIGMOD International conference on Management of Data[ C],1999. 145 - 156. 被引量:1
  • 6HAN JW, KAMBER M. DATA MINING Concepts and Techniques[ M]. Morgan Kaufmann Publishers, 2000. 被引量:1
  • 7HAN J, PEI J, YIN Y. Mining Frequent patterns without candidate generation[ A]. Proc 2000 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'00) [ C], May 2000. 1 - 12. 被引量:1
  • 8AGRAWAL R , IMIELINSKI T , SWAMI A . Mining association rules between sets of items in large databases[ A]. Proc. of the ACM SIGMOD Conference on Management of Data[ C]. Washington, D.C., May 1993. 被引量:1
  • 9BRIN S, MOTWANI R, ULLMAN J, et al. Dynamic Itemset Counting and Implication Rules for Market Basket Data[ A]. Proceedings of ACM SIGMOD International conference on Management of Data[ C]. 1997. 255 -264. 被引量:1
  • 10TSUR D, ULIAMAN J , ABITEBOUL S , et al. Query Flocks : A Generalization of Association - Rule Mining[ A]. Proceedings of ACM SIGMOD International conference on Management of Data[ C],1998.1 - 12. 被引量:1

共引文献20

同被引文献44

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部