期刊文献+

基于增强关联规则的医学图像分类新方法 被引量:1

A Better Classifier Based on Data Mining for Mammographic Images
下载PDF
导出
摘要 由于乳腺X光图像的复杂性,直接从图像中看出肿瘤及其良、恶性质是很困难的,因此建立高效的肿瘤自动诊断系统非常必要。文中将关联规则分类器和粗糙集理论相结合构造了增强关联规则分类器(EAC),应用于乳腺X光图像分类。实验结果表明,EAC的分类精确度可达到77.48%,比单独使用关联规则的分类精确度(69.11%)要高近10%,同时规则数也明显减少。 Purpose. There exist only several methods based on data mining for classifying mammographic images . We present a new method, also based on data mining, that we believe is better than existing ones. In the full paper, we explain our new method in detail; in this abstract, we just list the two topics of our explanation : (1) pretreating images and extracting their features ; (2) enhanced associative classifier (EAC), whose subtopics are rough sets theory, associative rule, and algorithm for EAC. The experimental results, given in detail in Table 1 in the full paper, show that this EAC can get 77.48% classification accuracy which is higher than the 69. 11% obtained by Ref. 1 with associative classifier; furthermore the number of rules is much fewer than that of Ref. 1.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2006年第3期401-404,共4页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(60373108 60573096)资助
关键词 增强关联规则分类器 粗糙集理论 乳腺X光图像 enhanced associative classifier (EAC), rough sets theory, mammographic image
  • 相关文献

参考文献5

  • 1Marialuiza A, Osmar R, Alexandru C. Application of Data Mining Techniques for Medical Image Classification. Proceedings of Second Intl Workshop on Multimedia Data Mining in Conjunction with Seventh ACM SIGKDD, San Francisco, USA, 2001, 3(2): 94-101 被引量:1
  • 2Bottigli U, Golosio B. Feature Extraction from Mammographic Images Using Fast Matching Methods . Nuclear Instruments and Methods in Physics Research, ELSEVIER, 2002, 487(2): 209-215 被引量:1
  • 3Sharma M, Singh S. Evaluation of Texture Methods for Image Analysis. Proceedings of the Seventh Australian and New Zealand Intelligent Information Systems Conference, Perth, 2001, 18-21 被引量:1
  • 4Li H, et al. Markov Random Field for Tumor Detection in Digital Mammography. IEEE Trans on Medical Imaging,2000, 14(3): 565-576 被引量:1
  • 5HanJ KamberM.数据挖掘概念与技术[M].北京:机械工业出版社,2001.185. 被引量:15

共引文献14

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部