期刊文献+

圆轨道锥束重建中Radon空间数据缺失 被引量:4

Data incompleteness in Radon space for circular cone-beam reconstruction
原文传递
导出
摘要 实际工程中广泛采用的圆轨道锥束CT重建算法(FDK类算法)中,只有在小锥角(<±5°)的条件下才能较好地重建。为了克服这一缺点,增大圆轨道可重建的锥角范围,推导了圆轨道锥束重建中R adon空间数据缺失与锥角的关系,并基于这一关系提出了基于不同半径的两个同心圆轨道的“改进型误差减小”(im proved error reduction-based,IERB)算法,利用估算的重建误差改善重建结果。数值仿真实验结果表明,IERB算法在锥角≤±10°时都能获得相当好的重建结果,在锥角更大时也可适用于一定的区域。该算法不适用于数据缺失过多的区域。 A computed tomgraphy algorithm was developed that can incorporate larges cone angles in circular cone-beam reconstructions to overcome the shortcomings of widely used algorithms (FDK type algorithms) which only work with small cone angles (〈±5°). The circular cone-beam reconstruction error was related to the scanning locus radius. An improved error reduction-based method was developed based on two scans in circular orbits with different radii with the estimated reconstruction error. Numeric simulations show that the algorithm works well with cone angles less than 10° and can be utilized in some regions when the cone angle is even larger. The algorithm cannot work in regions with too much incomplete Radon data.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第6期809-812,共4页 Journal of Tsinghua University(Science and Technology)
基金 教育部博士点基金项目(20030003074) 国家自然科学基金资助项目(10135040)
关键词 CT(computed tomography)算法 锥束重建 圆轨道 Radon空间 computed tomography (CT) algorithm cone-beam reconstruction circular trajectory Radon space
  • 相关文献

参考文献6

  • 1Feldkamp I A, Davis L C, Kress J W. Practical cone-beam algorithm [J]. Opt Soc Am A, 1984, 1(6): 612-619. 被引量:1
  • 2Schaller S, Flohr T, Steffen P. New, efficient fourier reconstruction method for approximate image reconstruction in spiral cone-beam CT at small cone angles[A]. SPIE Medical Imaging [C]. San Jose, CA, USA: SPIE-Int Soc Opt Eng, 1997. 被引量:1
  • 3Grass M, Kohler T, Proksa R. 3D cone beam CT reconstruction for circular trajectories [J]. Physics in Medicine and Biology, 2000, 45(2) : 329 - 347. 被引量:1
  • 4Kohler T, Proksa R, Grass M. A fast and efficient method for sequential cone-beam tomography [A]. IEEE Medical Imaging[C]. IEEE Inc, Lyon, France, 2000. 被引量:1
  • 5曾凯,陈志强,张丽,赵自然.基于同心圆轨道的锥形束CT重建算法[J].清华大学学报(自然科学版),2004,44(6):725-727. 被引量:8
  • 6曾凯,陈志强,张丽,赵自然.圆轨道锥束重建精度与锥角关系的研究[J].CT理论与应用研究(中英文),2003,12(3):9-16. 被引量:8

二级参考文献16

  • 1Feldkamp L A,Davis L C,Kress J W.Practical cone-beam algorithm [J].J Opt Soc Am,1984,1A:612-619. 被引量:1
  • 2Grass M.3-D cone-beam CT reconstruction for circular trajectories [J].Phys Med Biol,2000,45:329-347. 被引量:1
  • 3Turbell H.Cone-beam Reconstruction Using Filtered Backprojection [D].Sweden:Linkoping Studies in Science and Technology,Thesis No 672,2001. 被引量:1
  • 4Noo F,Defrise M.Single-slice rebinning method for helical cone-beam CT [J].Phys Med Biol,1999,44:561-570. 被引量:1
  • 5WANG Ge,Lin T H,Cheng P,et al.A general cone-beam reconstruction algorithm [J].IEEE Trans Med Imag,1993,12:486496. 被引量:1
  • 6Smith B D.Image reconstruction from cone-beam projection:Necessary and sufficient condition and reconstruction methods [J].IEEE Trans Med Imag,1985,4:14-28. 被引量:1
  • 7Grangeat P.Mathematical framework of cone beam 3-D reconstructn via the first derivative of the radon transform [A].Herman G T,Louis A K,Natterer F.Mathematical Methods in Tomography [C].Berlin:Springer Verlag,1990. 被引量:1
  • 8Kudo H,Saito T.Derivation and implentation of a cone-beam reconstruction algorithm for nonplannar orbits [J].IEEE Trans Med Imag,1994,13:196-211. 被引量:1
  • 9Hu H.A new cone beam reconstruction algorithm for the circular orbit [J].IEEE Trans Med Imag,1995,14:1261-1265. 被引量:1
  • 10Feldkamp A, Davis L C and Kress J W. Praactical cone-beam algorithm[J].Opt Soe Am A, 1984,VoL 1,612-619. 被引量:1

共引文献13

同被引文献44

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部