期刊文献+

求解非线性约束优化问题改进的粒子群算法 被引量:3

An Improved Particle Swarm Optimization to Settle Nonlinear Constrained Optimal Peoblem
下载PDF
导出
摘要 采用粒子群算法处理约束优化问题时,由于约束条件使得解空间成为非凸集合,粒子容易陷入局部最优,因此在搜索过程的不同阶段,提出变步长因子的粒子群算法,实验证明改进的算法在精度与稳定性上明显优于采用罚函数的粒子群算法和遗传算法等其他一些算法. An improved partical swarm optimization, different scale factor partical swarm algorithm was proposed. The numerical results showed that the improved PSO was feasible and can get more precise results than particle swarm optimization by using penalty functions and genetic algorithm and other optimization algorithms.
出处 《天津师范大学学报(自然科学版)》 CAS 2006年第2期73-76,共4页 Journal of Tianjin Normal University:Natural Science Edition
基金 天津市教育科学基金项目(20030515)
关键词 粒子群算法 动态罚函数 变步长因子 particle swarm algorithm dynamic penalty function different scale gene
  • 相关文献

参考文献10

  • 1Fogel D R An introduction to simulated evolutionary optimization[J].IEEE Trans on.Neural Networks,1994,5(1):3-14. 被引量:1
  • 2Kennedy J, Eberhart R. Particle swarm optimization[C]//Proc of the IEEE Int Conf on Neural Network. Perth, 1995:1 942-1 948. 被引量:1
  • 3Shi Y, Eberhart R. Empirical study of particle swarm optimization[C]//Pro of Congress on Evolutionary Computation. Washington,1999:1 945-1 950. 被引量:1
  • 4Joines J A, Houek R C. On the Use of non-stationary penality functions to solve nonlinear constrained optimization problems with GRs[C]//In:Proc IEEE Int Conf of Evol Comp. SanMateo, CA:Morgan Kaufmann Publishers, 1994: 579-585. 被引量:1
  • 5Kuri A. A universal eclectic genetic algorithm for constrained optimization[C]// Proceedings 6th European Congress on Intelligent Techniques & Soft Computing. EUFIT98, 1998: 518-522. 被引量:1
  • 6Powell D,Skolnick M. Using genetic algorithms in engineering design optimization with nonlinear constraints[C]//In: Forest,S. ,ed. Proceeding softhe 5th International Conference on Genetic Algorithms. SanMateo, CA: Morgan Kaufmann Publishers, 1993: 424-430. 被引量:1
  • 7张喆,薛任.微粒群算法在非线性约束优化中的应用[J].计算机工程与应用,2004,40(25):90-92. 被引量:8
  • 8王凌著..智能优化算法及其应用[M].北京:清华大学出版社,2001:230.
  • 9潘正君 康立山 陈屏.演化计算[M].北京:清华大学出版社,2001.. 被引量:2
  • 10Joines J, Houck. On the use of non-stationary penalty function to solve nonlinear constrained optimization problem with GAS[C]//Proceedings of First IEEE Conference on Evolutionary Computation. Washington, 1999: 579-584. 被引量:1

二级参考文献8

  • 1Fogel D B.An Introduction to Simulated Evolutionary Optimization[J].IEEE Trans on Neural Networks, 1994;5 (1) :3~14 被引量:1
  • 2Joines J A,Houck R C.On the Use of Non-stationary Penalty Functions to Solve Nonlinear Constrained Optimization Problems withGA's[C].In:Proc IEEE Int Conf of Evol Comp,1994:579~585 被引量:1
  • 3Kennedy J,Eberhart R C.Particule Swarm Optimization[C].In:Proc IEEE Int Conf of Neural Networks ,Piscataway ,NJ, 1995: 1942~1948 被引量:1
  • 4Parsopoulos K E.Stretching technique for Obtaining Global Minimizes Through Particle Swarm Optimization[C].In:Proc Particle workshop,Indianpolis ( IN ), USA, 2001: 22~29 被引量:1
  • 5Parsopoulos K E.Initializing the Particle Swarm Optimizer Using the Nonlinear Simplex Method[C].In:Advances in Intelligent Systems,Fuzzy Systems,Evolutionary Computation. WSEAS Press,2002:216~221 被引量:1
  • 6Kennedy J ,Eberhart R C.Swarm Intelligence[M].Morgan Kaufmann,2001 被引量:1
  • 7Parsopoulos K E,Parsopoulos M N.Modification of the particle Swarm Optimizer for Locating All the Global Minima,Artificial Neural Networks and Genetic Algorithm[M].Springer,2001:324~327 被引量:1
  • 8谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:421

共引文献8

同被引文献30

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部