期刊文献+

滑动弧放电等离子体裂解正己烷实验研究 被引量:8

The experimental investigation on the decomposition of hexane in gliding arc discharge
下载PDF
导出
摘要 考察了一种新型低温等离子体发生方式滑动弧放电对正己烷的裂解效果,检测了主要裂解产物,并分析了供给电压、正己烷初始浓度、电极材料和反应器结构对裂解率的影响.结果表明,该法可以有效处理正己烷,最高裂解率达96%.在空气中的主要裂解产物为CO2、CO、NO2和H2O.增大供给电压可以提高正己烷裂解率;初始浓度增大后裂解率下降,但绝对处理量增大;相同能耗情况下,采用铁电极时能量利用率最低,正己烷裂解率低于铝电极和铜电极;电极最小间距和喷嘴直径之间的比例关系影响裂解效果,优化两者的匹配关系可以提高裂解率. The hexane decomposition efficiency with a novel type of non-thermal plasma engendered by gliding arc gas discharge is investigated, and the main decomposition products are analyzed. The effects of supply voltage, hexane initial concentration, electrode material, and reactor structure parameters on decomposition rate of hexane are studied. The results show that hexane can be decomposed effectively with this method, while the maximum removal efficiency of hexane is up to 96% with the air as carrier gas. The main decomposition products in the air are CO2 , CO, NO2 and H2O. The conversion rate of hexane increases with enhancing supply voltage. Increasing the initial concentration of hexane in the gas mixture will decrease the decomposition rate, but increase the absolute treating capacity. The decomposition rate is lower when using the iron as the electrode material, compared with the aluminum and cuprum under the same energy consumption. The ratio of the shortest distance and nozzle diameter will do effect of the decomposition, the maximal decomposition rate can be obtained through optimizing ratio of these two parameters.
出处 《环境科学学报》 CAS CSCD 北大核心 2006年第6期877-881,共5页 Acta Scientiae Circumstantiae
基金 国家自然科学基金资助项目(No.50476058)~~
关键词 低温等离子体 滑动弧放电 挥发性有机物 正己烷 non-thermal plasma gliding arc discharge volatile organic compounds hexane
  • 相关文献

参考文献10

  • 1Czenichovski A.1994.Gliding Arc Applications to Engineering and Environment Control[J].Pure & Appl Chemistry,66 (6):1301-1310 被引量:1
  • 2Czenichowski A,Czenichovski P.1996.Pyrolysis of Natural Gas in the Gliding Arc Reactor[J].Hydrogen Energy Progress Ⅺ,1:661 -669 被引量:1
  • 3Czernichowski A,Ranaivosoloarimanana A.1996.Zapping VOCs with A Discontinuous Electric Arc[J].Chemtech,26(4):45-49 被引量:1
  • 4Fridman A,Nester S,Kennedy A,et al.1995.Gliding Arc Gas Discharge[J].Energy and Combustion Science,25:211-231 被引量:1
  • 5Kalra C S.,Gutsol A F,Fridman A A.2005.Gliding Arc Discharges As a Source of Intermediate Plasma for Methane Partial Oxidation[J].IEEE Transactions on Plasma Science,33 (1):32-41 被引量:1
  • 6Krawczyk K,Ulejczyk B.2003.Decomposition of Chloromethanes in Gliding Discharges[J].Plasma Chemistry and Plasma Processing,23(2):265-281 被引量:1
  • 7Krawczyk K,Ulejczyk B.2004.Influence of Water Vapour on CCl4 and CHCl3 Conversion in Gliding Discharge[J].Plasma Chemistry and Plasma Processing,24:155-167 被引量:1
  • 8Kohno H,Berezin A A,Chang J S,et al.1998.Destruction of Volatile Organic Compounds Used in A Semiconductor Industry by A Capillary Tube Discharge Reactor[J].IEEE Transactions on Industry Application,34 (5):953-966 被引量:1
  • 9Mok Y S,Nam I S.2002.Modeling of Pulsed Corona Discharge Process for the Removal of Nitric Oxide and Sulfur Dioxide[J].Chemical Engineering Journal,85:87-97 被引量:1
  • 10State Environmental Protection Administration.1997.National Standards of People' s Republic of China (GB 16297-1996)[S].Integrated Emission Standard of Air Pollutants 被引量:1

同被引文献253

引证文献8

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部