期刊文献+

放松对策色数为3且结构简单的树

Trees with More Simple Structure and Relaxed Game Chromatic Number 3
下载PDF
导出
摘要 讨论了图上的二人对策着色和放松对策着色.给出了放松对策色数能够达到树族放松对策色数最大值且结构非常简单的树. This paper discusses the game coloring and relaxed game coloring on graphs. In this paper, we give a tree with more simple structure whose relaxed game chromatic number is equal to the maximum of the game chromatic number of forests.
作者 沈邦玉
出处 《淮阴师范学院学报(自然科学版)》 CAS 2006年第2期102-104,共3页 Journal of Huaiyin Teachers College;Natural Science Edition
关键词 对策着色 放松对策着色 可行色 对策色数 放松对策色数 二叉正则树 game coloring relaxed game coloring feasible color game chromatic number relaxed game chromatic number tree binary regular tree
  • 相关文献

参考文献14

  • 1[1]Bodlaender H L.On the complexity of some coloring games[J].Int J Found.Comput Sci,1991,2:133-148. 被引量:1
  • 2[2]Faigle U,Kern U,Kierstead H A,Trotter W T.On the game chromatic number of some classes of graphs[J].Ars Combin,1993,35:143-150. 被引量:1
  • 3[3]Dinski T,Zhu X.A bound for the game chromatic number of graphs[J].Discrete Math,1999,196:109-115. 被引量:1
  • 4[4]Guan D,Zhu X.The game chromatic number of outerplanar graphs[J].J Graph Theory,1999,30:67-70. 被引量:1
  • 5[5]Chou C Y,Wang W,Zhu X.Relaxed game chromatic numberof graphs[J].Discrete Math,2003,262:89-98. 被引量:1
  • 6沈邦玉,周兴和.二叉树上的二人对策着色[J].南京师大学报(自然科学版),2004,27(2):19-22. 被引量:3
  • 7[7]He W,Wu J,Zhu X.Relaxed game chromatic number of trees and outerplanar graphs[J].Discrete Math,2004,281:209-219. 被引量:1
  • 8[8]Dunn C,Kierstead H A.A simple competitive graph coloring algorithm II[J].J Combin Theory Ser B,2004,90:93-106. 被引量:1
  • 9沈邦玉,周兴和.树上的二人对策着色[J].淮阴师范学院学报(自然科学版),2004,3(1):4-7. 被引量:3
  • 10[10]Bondy J A,Murty U S R.Graph Theory with Application[M].The Macmillan Press Ltd USA,1976:115-180. 被引量:1

二级参考文献20

  • 1[1]Bodlaender H L. On the complexity of some coloring games[J].Int J Found. Comput Sci, 1991(2): 133-148. 被引量:1
  • 2[2]Bondy J A,Murty U S R. Graph Theory with Application[M]. The Macmillan Press Ltd USA, 1976: 115-180. 被引量:1
  • 3[3]Chou C Y,Wang W,Zhu X. Relaxed game chromatic number of graphs[J]. Discrete Math, 2003(262): 89-98. 被引量:1
  • 4[4]Dinski T,Zhu X. A bound for the game chromatic number of graphs[J]. Discrete Math, 1999(196): 109-115. 被引量:1
  • 5[5]Faigle U,Kern U,Kierstead H A,Trotter W T. On the game chromatic number of some classes of graphs[J]. Ars Combin, 1993(35): 143-150. 被引量:1
  • 6[6]Guan D, Zhu X. The game chromatic number of outerplanar graphs[J]. J Graph Theory,1999(30): 67-70. 被引量:1
  • 7[7]Kierstead H A. A simple competitive graph coloring algorithm[J]. J Combin Theory Ser B, 2000(78): 57-68. 被引量:1
  • 8[8]Kierstead H A,Trotter W T. Planar graph coloring with an uncooperative partner[J]. J Graph Theory, 1994, 18(6): 569-584. 被引量:1
  • 9[9]Zhu X. The game coloring number of planar graphs[J], J Combin Theory Ser B, 1999(75): 245-258. 被引量:1
  • 10[10]Zhu X. The game coloring number of pseudo partial k-trees[J]. Discrete Math, 2000(215): 245-262. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部