期刊文献+

基于联邦滤波技术的吨位智能测量系统 被引量:2

An Intelligent Tonnage-Measuring System Based on Federated Kalman Filter
下载PDF
导出
摘要 该文介绍了联邦Ka lm an滤波器的原理和结构,对多传感器信息融合技术在船舶吨位智能测量系统中的应用进行了探讨。文中构建了船舶吨位智能测量系统,根据系统需要详细设计了一种基于联邦Ka lm an滤波结构的多声纳传感器信息融合算法,并且给出了计算船舶吨位的算法,在多声纳传感器融合过程中,提出“变参考系统”方法来提高系统精度和可靠性,最后用MATLAB对本系统进行了仿真。仿真结果表明,算法有较高的系统精度和容错性,系统可行。 The elements and the frame of Federated Kalman Filter are introduced in this paper,and the application of the Multi - sensor Information Fusion technic in the wartercraft tonnage - measuring system is discussed. An intelligent watercraft tonnage - measuring system is designed in theory, and an effective arithmetic based on the Federated Kalman Filter is given to solve this problem. In this arithmetic, the 'changing reference system' method is used to improve the accuracy and reliability. The results of the simulation indicates that the system is effective and feasible.
出处 《计算机仿真》 CSCD 2006年第6期127-129,共3页 Computer Simulation
基金 江苏省自然科学基金资助项目(BK2002064) 河海大学科技创新基金资助项目
关键词 联邦卡尔曼滤波 多传感器信息融合 智能测量 Federated Kalman filter MSIF Intelligent - measuring
  • 相关文献

参考文献4

  • 1付梦印等编著..Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2003:215.
  • 2盛三元,王建华.联合卡尔曼滤波在多传感器信息融合中的应用[J].雷达与对抗,2002,22(1):27-33. 被引量:21
  • 3Sun Shuli,Deng Zili,Multi-sensor optimal information fusion Kalman filter[J].Automatica,2004,40(6):1017-1023. 被引量:1
  • 4吕孝乐..数据融合技术研究及其在船舶组合导航中的应用[D].哈尔滨工程大学,2002:

二级参考文献1

共引文献20

同被引文献10

  • 1卢湖川,朱矿军.基于视频的交通流参数检测[J].城市交通,2005,3(2):70-74. 被引量:9
  • 2王伟,李志鹏,刘允才.交通信息实时视频检测系统的实现[J].微型电脑应用,2006,22(9):25-28. 被引量:4
  • 3Harini Veeraraghavan, Nathaniel Bird, Stefan Atev, et al. Classifiers for driver activity monitoring [ J]. Transportation Research Part C: Emerging Technologies,2007, 1 ( 15 ) :51 - 67. 被引量:1
  • 4Mubarak Shah, Guest Introduction: The changing shape of computer vision in the twenty-first century [ J ]. International Journal of Computer Vision, 2002,2(50) :103 - 110. 被引量:1
  • 5Kojima A,Tamura T, Fukunaga K. Title : Natural language description of human activities from video images based on concept hierarchy of actions[ J]. International Journal of Computer Vision,2002,2 (50) : 171 - 184. 被引量:1
  • 6Makris D, Ellis T J. Learning semantic scene models from observing activity in visual surveillance[J]. IEEE Transactions on Systems Man and Cybernetics-Part B, 2005,3 (35) : 397 - 408. 被引量:1
  • 7Hu Wei-ming,Tan Tie-niu. A Survey on Visual Surveillance of Object Motion and Behaviors [ J ]. IEEE Transactions on applications and reviewss-Part C ,2004,3 ( 35 ) :334- 352. 被引量:1
  • 8Pun T. Entropic thresholding: A new approach [ J ]. Computer Graphics and Image Processing, 1981, 3(16) : 210-239. 被引量:1
  • 9Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift[ A]. In: IEEE International Proceeding on Computer Vision and Pattern Recognition[ C ], Hilton Head Island, SC,USA, 2000, (2) :142 - 149. 被引量:1
  • 10John G. Allen, Richard YD Xu, Jesse S. Jin "object tracking using CamShift algorithm and multiple quantized feature spaces" [ A ] , In: Pan-Sydney Area Workshop on Visual Information Processing VIP2003 [ C ] , Sydney, Australia,2003 : 1 - 5. 被引量:1

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部