期刊文献+

密度函数小波估计方法 被引量:1

A Wavelet Estimation Method of Density Function
下载PDF
导出
摘要 对试验数据估计通常需要作正态假设,获得正态分布样本值信息。但对不符合正态分布假设的许多工程实际问题,例如多管火箭炮的弹丸落点坐标分布与正态分布相差较大,本文介绍了一种非正态分布样本值的新方法———密度函数小波估计方法。通过用正交对称小波基函数估计概率密度函数,对含有噪声的试验数据进行阈值处理。用此方法进行射弹散布估计,避免了试验数据人为进行正态分布假设带来的较大误差,实例分析表明该方法有效。 In order to obtain the sample message of normal distribution, a normal hypothesis is used for the estimation of test data in general. But many engineering practice problems are not in accord with normal distribution hypothesis, for example, there is a world of difference between the impact point distribution of multiple launch rocket and the normal distribution. A new method, a wavelet estimation method of density function, is introduced, which estimates the non-normal sample distribution. Probability density function was estimated with orthogonal symmetrical wavelet base function, test data with noise were dealt with by threshold. The dispersion of projectile is estimated with this method so that the deviation of test data from normal hypothesis is avoided. The instance analysis indicates that this method is effective.
出处 《兵工学报》 EI CAS CSCD 北大核心 2006年第3期394-398,共5页 Acta Armamentarii
关键词 函数论 小波基函数 正交对称 密度函数 阈值 散布 function wavelet base function orthogonal symmetry density function threshold dispersion
  • 相关文献

参考文献10

  • 1闫章更,魏振军编著,中国人民解放军总装备部军事训练教材编辑工作委员会编..试验数据的统计分析[M].北京:国防工业出版社,2001:432.
  • 2杨福生著..小波变换的工程分析与应用[M].北京:科学出版社,1999:271.
  • 3Vannuci M.Nonparametric density estimation using wavelets[R].Technical Report Dp 95-26.ISDS,Duke University,1998. 被引量:1
  • 4Pinheiro A,Vi dakovic B.Estimating the square root of a density via compactly supported wavelets[J].Computational Statistics Data Analysis,1997,25:394-415. 被引量:1
  • 5Vidakovic B.A note on random densities via wavelets[J].Statistics & Probability Letters,1995b,26:315-321. 被引量:1
  • 6Brown L D,Cai T.Wavelet regression for random uniform design[R].Technical Report Department of Statistics,#97-15,Purdue University:Department of Statistics,1997. 被引量:1
  • 7Donoho D l,Johnstone I M.Ideal spatial adaptation via wavelet shrinkage[J].Biometrika,1994,81:425-455. 被引量:1
  • 8Tribouley K.Practical estimation of multivariate densities using wavelet methods[J].Statistica Neerlandica,1995,49:41-62. 被引量:1
  • 9Donoho D l,Johnstone I M,Kerkyacharian G,et al.Wavelet shrinkage:Asymptopia?[J].J Roy Stat Soc Ser B,1995,57:307-369. 被引量:1
  • 10Kolaczyk E.Wavelet methods for the inversion of certain homogeneous linear opearators in the presence of noisy data[D].Stanford University,1994:73-85. 被引量:1

同被引文献17

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部