期刊文献+

A Novel Nano-Grating Structure of Polarizing Beam Splitters 被引量:3

A Novel Nano-Grating Structure of Polarizing Beam Splitters
下载PDF
导出
摘要 A metal wire nanograting is fabricated and used as a polarizing beam splitter that reflects TE polarization and transmits TM polarization. The metal wire nanograting is based on a fully optimized design structure that consists of not only the core nanowire metal grid but also the substrate nanograting. The substrate nanograting is designed to provide better performance for both TM and TE polarizations. We fabricate metal-stripe gratings on a glass substrate using nanoimprint lithography and reactive ion etching process. A detailed investigation of the polarization effect at 1550 nm wavelength is carried out with the theoretical analysis and experimental results. The polarizing beam splitter has uniform performance with wide variations in the incident angle (±25) and has high efficiency for both the reflected and the transmitted beams. A metal wire nanograting is fabricated and used as a polarizing beam splitter that reflects TE polarization and transmits TM polarization. The metal wire nanograting is based on a fully optimized design structure that consists of not only the core nanowire metal grid but also the substrate nanograting. The substrate nanograting is designed to provide better performance for both TM and TE polarizations. We fabricate metal-stripe gratings on a glass substrate using nanoimprint lithography and reactive ion etching process. A detailed investigation of the polarization effect at 1550 nm wavelength is carried out with the theoretical analysis and experimental results. The polarizing beam splitter has uniform performance with wide variations in the incident angle (±25) and has high efficiency for both the reflected and the transmitted beams.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第7期1820-1822,共3页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 10474076.
  • 相关文献

参考文献11

  • 1Dias D, Stankovic S, Haidner H, Wang L L, Tschudi T, Ferstl M and Steingrilber R 2001 J. Opt. A: Pure Appl. Opt.3 164 被引量:1
  • 2Wang J. J, Chen L, Tai S W, Deng X G, Sciortino P, Liu F,Deng J D, Liu X M, Nikolov A and Sinatore D 2005 Proc.SPIE 5592 51 被引量:1
  • 3Li S G, Liu X D, Zhou G Y and Hou L T 2005 Chin. Phys.Lett. 22 2855 被引量:1
  • 4Zhang C S, Kai G Y, Wang Z, Liu Y G, Sun T T, Liu J G,Yuan S Z and Dong X Y 2005 Chin. Phys. Lett. 22 2858 被引量:1
  • 5Schnabel B, Kley E B and Wyrowski F 1999 Opt.Engin.38 220 被引量:1
  • 6Chou S.Y, Krauss P R and Renstrom P J 1995 Appl. Phys.Lett. 67 3114 被引量:1
  • 7Liu J W, Yu J Z and Chen S W 2005 Chin. Phys. Lett. 22 142 被引量:1
  • 8Hceht E and Zajak A 1974 Optics (Reading, MA: Addison-Wesley) 被引量:1
  • 9Rytov S M 1956 Soy. Phys. JETP 2 466 被引量:1
  • 10Yeh P 1978 Opt. Commun. 26 289 被引量:1

同被引文献13

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部