摘要
According to the chemical equations, the flux and concentration of oxygen required during bacterial lea- ching sulfuric mineral were investigated; the rule of air bubble transmitted in granular was researched in the Dump Leaching Plant of Dexing Copper Mine. The results show that lack of oxygen in dump leaching is the critical factor of restricting leaching reaction. Pyrite is the primary oxygen-consuming mineral in bioleaching. When its content is too high, it needs a great deal of oxygen for reaction and competes for the finite oxygen with objective minerals, and thus the leaching velocity decreases greatly. The average size of ore particles and diameter of bubbles are the key parameters affecting the mass transfer coefficient. Reverse analysis was adopted, and it shows that 44.8 m^3 air per unit ore can meet the requirement of production if the molar ratio of pyrite to chalcopyrite is 10.
According to the chemical equations, the flux and concentration of oxygen required during bacterial leaching sulfuric mineral were investigated; the rule of air bubble transmitted in granular was researched in the Dump Leaching Plant of Dexing Copper Mine. The results show that lack of oxygen in dump leaching is the critical factor of restricting leaching reaction. Pyrite is the primary oxygen-consuming mineral in bioleaching. When its content is too high, it needs a great deal of oxygen for reaction and competes for the finite oxygen with objective minerals, and thus the leaching velocity decreases greatly. The average size of ore particles and diameter of bubbles are the key parameters affecting the mass transfer coefficient. Reverse analysis was adopted, and it shows that 44.8 m^3 air per unit ore can meet the requirement of production if the molar ratio of pyrite to chalcopyrite is 10.
基金
Project(2004CB19206) supported by State Key Fundamental Research and Development Program of China
project(50321402) supported by the National Science Fundfor Distinguished Young Scholars of China
project(50321402) supported by NationalFund for Creative Research Groups of China