摘要
运用Peyrard的一维非线性原子链的孤立子模型,讨论了马氏体相界面的运动.在Sine-Gorden势场下,导出相界面宽度,并求得相界面能量,得出其能量随着界面迁动速率增大而增大,从而表明了相变驱动力大的马氏体生长得快.进一步计算出界面的动量及有效质量.最后讨论了界面在外力及阻尼情况下的运动,得出界面的一般运动方程.
The motion of martensitic transformation interface was studied with the soliton model of Peyrard's one - dimensional nonlinear atomic chain. In the Sine - Gorden potential, the interface width was got. And the solution of interface energy was obtained. It increases with the increase of velocity of the interface motion. The result shows that the driving force is larger and the transformation is faster. Go further the momentum and effective mass of interface was acquired. At last the motion of interface was researched in the presence of an external force and damping. The common motion equation of interface was achieved.
出处
《湖北大学学报(自然科学版)》
CAS
北大核心
2006年第2期161-164,共4页
Journal of Hubei University:Natural Science
基金
湖北省教育厅科研项目基金(D200510002)资助课题
关键词
马氏体相界面
孤立子
界面能
界面运动方程
Sine-Gorden势
martensitic transformation interface
soliton
interface energy
interface motion equation
Sine - Gorden potential