期刊文献+

A Class of the Geometric Inequalities Involving k-Brocard Distance 被引量:5

A Class of the Geometric Inequalities Involving k-Brocard Distance
下载PDF
导出
摘要 Let P be an inner point of a convex N-gon ΓN : A1A2… ANA1(N ≥ 3), and let di,k denote the distance from the point Ai+k to the line PAi(i = 1,2,…,N, Ai = Aj〈=〉 i ≡ j(modN)), which is called the k-Brocard distance for P of ΓN. We have proved the following double-inequality: If P ∈ ΓN, k = N↑∩i=1∠Ai-kAiAi+k(1 ≤ k 〈 N/2,i =1,2,…,N), and r ≤ lnN-ln(N-1)/ln2+2[lnN-ln(N-1)], then (1/N N↑∑↑i=1di^r, k)^1/r≤1/N coskπ/N N↑∑↑i=1|AiAi+k|≤sin2kπ/2sinπ/N(1/N N↑∑↑i=1|AiAi+1|^2.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第2期210-219,共10页 数学季刊(英文版)
基金 Supported by the NSF of China(10171073)
关键词 convex N-gon k-Brocard distance Hoelder inequality Janous-Klamkin's conjecture Hoelder不等式 Janous-Klamkin猜想 几何不等式 内部点
  • 相关文献

参考文献13

  • 1KUANG Ji-chang. Applied Inequalities[M]. Changsha: Hunan Education Press, 1993(in Chinese). 被引量:1
  • 2CARMICHAEL R D, MASON T E. Note on the roots of algebraic equations[J]. Bull Amer Math Soc, 1914,21: 14-22. 被引量:1
  • 3LANDAU E. Uber eine Aufgabe aus der Funktionentheoriep[J]. Tohoku Math J, 1914, 5: 97-116. 被引量:1
  • 4MITRINOVI D S C, Analytic Inequalities[M]. New York: Springer, 1970. 被引量:1
  • 5MITRINOVI D S C, PECARIC J E, FINK A M. Classical and New Inequalities in Analysis[M]. Dordrecht:Kluwer, 1993. 被引量:1
  • 6ZHANG Ri-xin, WEN Jia-jin. Higher-domensional generalization of Tutescu's conjecture[J]. J Sichuan Univ(Natural Science Edition), 2000, 37(6): 803-809. 被引量:1
  • 7SPECHT W. Abschatzungen der Wurzeln algebraischer Gleichungen[J]. Math Z, 1949, 52: 310-321. 被引量:1
  • 8LUO Zhao, WEN Jia-jin, SHI Huan-nan. A class of the geometric inequalities invoving k-Brocard points[J].J Sichuan Univ(Natural Science Edition), 2002, 39(6): 971-976. 被引量:1
  • 9WEN Jia-jin, ZHANG Ri-xin. Two inequalities of conjecture involving the sum of inscribed polygon in a circle[J]. Shanxi normal Univ, 2002, 30: 803-809. 被引量:1
  • 10WANG Wan-lan, WAN Jia-jin, SHI Huan-nan. On the optimal values for inequalities involving power means[J]. Acta Math Sinica, 2004, 47(6): 1053-1062. 被引量:1

同被引文献52

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部