期刊文献+

NBUE分布类应力-强度模型的概率上界

The Bound of Probability for Stress-strength Model in Component Life NBUE
原文传递
导出
摘要 研究应力-强度模型的结构的可靠性分析,当元件应力变量分布属于NBUE类,强度变量服从指数分布,给出了应力-强度模型中概率的上界,由此讨论了n个元件组成系统的应力-强度模型概率上界. The structural reliability of stress-strength model was considered. In the model, the life distribution of component stress is NBUE and the life distribution of component strength is exponential, gives an upper bound of probability for stress-strength, obtains upper bound of probability for stress-strength system composed by n Component.
作者 徐毅
出处 《数学的实践与认识》 CSCD 北大核心 2006年第5期247-250,共4页 Mathematics in Practice and Theory
关键词 结构的可靠性 应力-强度模型 NBUE分布类 structural reliability stress-strength model NBUE class
  • 相关文献

参考文献2

二级参考文献10

  • 1Abouammoh,A.M.,Ahamed,A.N.and Khalique,A.,Shocks models on new renewal better than used classes of life distributions,Statistics and Probability Letters,48(2000),189-194. 被引量:1
  • 2Abouammoh,A.M.,Ahamed,A.N.and Barry,A.M.,Shocks models and testing for the renewal mean remaining life,Microelectronics and Reliabi.1ity,33(1993),729-740. 被引量:1
  • 3Barlow,R.E.and Proschan,F.,Statistical Theory ol Reliability andLife Testing:Probability Models,To Begin with,Silver Spring,MD.,1981. 被引量:1
  • 4Basu,A.P..The estimation of P(X<Y)for distributions useful in life testing,Naval Research Logistic Quarterly,28(1981),383-392. 被引量:1
  • 5Basu.A.P.and Kirmani,S.U.N.A.,Some results involving HNBUE distributions,Journal of Applied Probability.23(1986).1038-1044. 被引量:1
  • 6Billingsley,P.,Probability and Measure,John Wiley and Sons,New York,1979. 被引量:1
  • 7Hollander,M.and Proschan,F.,Test for the mean residual life,Biometrika,62(1975),585-593. 被引量:1
  • 8Koul,H.,Testing for new better than used in expectation,Communication in Statistics.Theory and Methods,7(1978),685-701. 被引量:1
  • 9Ross,S.M.,Stochastic Process,John Wiley and Sons,New York,1983. 被引量:1
  • 10Serfling,R.J.,Approximation Theorems in Mathematical Statistics,John Wiley and Sons,New York,1980. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部