期刊文献+

基于可拒识-双层支持向量分类器的微钙化点检测

Micro-calcifications Detection Based on Two-layer Support Vector Classifier with Rejection Feature
下载PDF
导出
摘要 为克服医学图像微钙化点检测中假阳性高的缺点,构造了一种带拒识能力的双层支持向量模型分类器,用于钙化点检测。检测时,首先利用基于最大间隔超平面的支持向量分类器(SVC)对输入模式进行分类判决;然后通过求取真实钙化点样本特征空间最小的包含球形边界来得到钙化点样本的球形支持向量域表示(SVDD);接着利用钙化点的支持向量域表示对输入模式进行拒识或接受处理;最后利用SVC与SVDD两个分类器的结果来进行综合判决。仿真实验结果表明,该算法在不影响微钙化点的检出率的情况下,可部分解决假阳性高的问题。 To solve the problem of false positive in micro-calcification detection, a two-layer support vector classifier model with rejection feature(TLSVCRF) is proposed. Firstly the first layer of support vector classifier(SVC) with maximum margin between two classes will be used for classifying the input pattern; then the sphere support vectors of true micro- calcification points to describe the distribution of the sample were obtained by searching all the sphere boundaries containing the samples of this class. Then the input pattern of no-object classes could be rejected by the second support vector domain description(SVDD). Lastly the resuhs of SVC and SVDD classifier are integrated to obtain the right results, Experimental results demonstrate that the method of two-Layer support vector classifier with rejection feature performs better in achieving lower false positive.
作者 胡正平 张晔
出处 《中国图象图形学报》 CSCD 北大核心 2006年第5期652-655,共4页 Journal of Image and Graphics
基金 国家自然科学基金资助项目(60272073) 河北省科技发展指导项目(Z2005310)
关键词 支持向量分类器 微钙化点检测 支持向量域描述 拒识性能 support vector classifier ( SVC ), micro-calcification detection, support vector data description ( SVDD),rejection performance
  • 相关文献

参考文献7

  • 1Vapnik Vladimir N.The nature of statistical learning theory[M].New York,NY:Wiley,1998,chapter 5. 被引量:1
  • 2万柏坤,王瑞平,朱欣,綦宏志.SVM算法及其在乳腺X片微钙化点自动检测中的应用[J].电子学报,2004,32(4):587-590. 被引量:21
  • 3EI-Naqa Issam,YANG Yong-yi,Wernick Miles N,et al.A support vector machine approach for detection of microcalcifications[J].IEEE Transactions on Medical Imaging,2002,21 (12):1552 ~1563. 被引量:1
  • 4Tax David M J,Duin Robert P W.Support vector data description[J].Machine Learning,2004,54(1):45 ~ 66. 被引量:1
  • 5CHAO Yuan,David Casasent.A novel support vector classifier with better rejection performance[A].In:Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C],Madison,WI,United States,2003:1063 ~ 1069. 被引量:1
  • 6Rizvi S A,Saasawi T N,Nasrabadi N M.A clutter rejection technique for FLIR imagery using region based principal component analysis[J].Pattern Recognition,2000,33(11):1931 ~ 1933. 被引量:1
  • 7YANG Guang-zheng,Huang Thomas S.Human face detection in a complex background[J].Pattern Recognition,1994,27 (1):58 ~ 63. 被引量:1

二级参考文献8

  • 1Vladimir N Vapnik.An overview of statistical learning theory[J].IEEE Trans.On Neural Network,1999,10(5):988-999. 被引量:1
  • 2Christopher J C Burges.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2:121-167. 被引量:1
  • 3Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995:1-15. 被引量:1
  • 4S R Gunn.Support Vector Machines for Classification and Regression[R].Technical Report,Image Speech and Intelligent Systems Research Group,University of Southampton,1997. 被引量:1
  • 5M O Stitson,J A E Weston,A Gammerman,et al.Theory of Support Vector Machines.Technical Report[R],CSD-TR-96-17.Department of Computer Science Egham,Surrey TW20 0EX,England,Royal Holloway University of London,December 31,1996. 被引量:1
  • 6V Vapnik,A Y Chervoknenkis.On the uniform convergence of relative frequencies events to their probabilities[J].Theory of Probable and Its Application,1971,16(2):263-280. 被引量:1
  • 7张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2264
  • 8王瑞平,万柏坤,曹旭晨.乳腺癌早期诊断的计算机处理研究[J].天津大学学报(自然科学与工程技术版),2002,35(4):497-500. 被引量:3

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部