期刊文献+

基于概率扩散的多光谱遥感图像分类模型 被引量:1

Multispectral Remote Sensing Image Classification Model Based on Probabilistic Diffusion
下载PDF
导出
摘要 为了提高遥感图像分类精度,提出了一种基于概率扩散模型的多光谱遥感图像自动分类技术。该方法首先通过比较模糊C均值分类器(FCM)的有效性函数来自动确定最优分类数目,然后利用基于形态学的各向异性概率扩散模型来调整中心像元隶属类别的概率,最后根据概率扩散的隶属概率向量图,并按照最大后验概率估计(MAP)对像元进行分类。由于各向异性扩散具有保边缘平滑的特点,因此,该概率扩散模型不仅能够有效地抑制同质区域内部“斑点”的产生,而且使得图像上重要的边缘特征得到了较好地保留。实验结果表明,该分类算法不仅能够避免分类图像中“斑点”噪声的影响,而且分类后的总体精度达到了77.76%和Kappa系数达到了0.7198,均优于未经过概率扩散的最大后验概率估计分类算法,因而具有一定的实用价值。 In this paper, we propose an automatic multispectral remote sensing image classification technique based on improved probabilistic diffusion. Firstly, the optimal number of clusters in muhispectral images is determined by comparing the validity functions of fuzzy c-means classifier(FCM). The posterior probability maps for each class are then smoothed by an improved version of muhispectral anisotropic diffusion based on morphology. Finally, each pixel is classified independently using the maximum a posterior probability(MAP) estimate based on probabilistie membership maps. Because of the elegant property of anisotropic diffusion, edge-preserving smoothing, probabilistic diffusion, not only restrains effectively speckles in homogeneous regions, but also preserves preferably the significant physiognomy and edge features. Experimental results are given to show that the proposed method avoids the influence of "class noise" and its overall accuracy and Kappa coefficient have superiority capability over the traditional maximum a posterior probability estimate classification method without probabilistic diffusion. Thus it is an ideal remote sensing classification method.
出处 《中国图象图形学报》 CSCD 北大核心 2006年第5期646-651,I0001,共7页 Journal of Image and Graphics
基金 国家自然科学基金资助项目(40523005 40471088) 国家重点基础研究发展计划"973"项目(2006CB701302)
关键词 各向异性扩散 概率扩散 多光谱遥感图像分类 最大后验概率估计 扩散系数 anisotropic diffusion, probabilistic diffusion, muhispectral remote sensing image classification, maximum a posteriori probability, diffusion coefficient
  • 相关文献

参考文献8

  • 1Perona P, Malik J, Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639. 被引量:1
  • 2Teo P C, Sapiro G, Wandell B. Creating connected representations of cortical gray mater for functional MRI visualization [J]. IEEE Transactions on Medical Imaging, 1997, 16(6) : 852 - 863. 被引量:1
  • 3Teo P C, Sapiro G, Wandell B. Anisotrepic Smoothing of posterior probabilities[A]. In: Proceedings of International Conference on Image Processing[C]. Washington, DC, USA, 1997, 1:26-29. 被引量:1
  • 4Teo P C, Sapiro G, Wandell B. Segmenting cortical ray matter for functional MRI visualization [A].In : Proceedings of International Conference on Computer Vision ( ICCV' 98) [C],Bombay, India,1998, 16:4 -7. 被引量:1
  • 5Catte F, Lions P L, Morel J, et al.Image selective smoothing and edge detection by nonlinear diffusion [J]. Society for Industrial and Applied Mathematics Journal on Numerical Analysis, 1992, 29 ( 1 ) :182 - 193. 被引量:1
  • 6Alvarez L, Lions P L, Morel J. Image selective smoothing and edge detection by nonlinear diffusion [J].Society for Industrial and Applied Mathematics Journal on Numerical Analysis, 1992, 29(3) :845 - 866. 被引量:1
  • 7Voci F, Eiho S, Sugimoto N, et al. Estimating the gradient in the Perona-Malik equation [J]. IEEE Transactions on Signal Processing Magazine, 2004, 21 (3) : 39 - 65. 被引量:1
  • 8Chen Chi-fan, Lee Jyh-ming, The validity measurement of fuzzy c-means classifier for remotely sensed images[A]. In : Proceedings of the 22nd Asian Conference on Remote Sensing [C].Singapore,2001, 1:208 -211. 被引量:1

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部