期刊文献+

支持向量回归在贮灰坝渗流监测中的应用 被引量:1

Application of SVR to Seepage Monitoring of Ash Storage Dam
下载PDF
导出
摘要 鉴于支持向量机在机器学习方面表现出的良好性能,提出了基于支持向量回归(SVR)算法的贮灰坝渗流监测模型。采用基于平行网格搜索的交叉验证法选择模型参数,避免了参数选择的盲目性、随意性,提高了预测精度。实例分析表明,该渗流监测模型与传统的神经网络(反向传播 (BP)网络、径向基核函数(RBF)网络)模型相比,具有预测精度高、泛化能力强等优点,能够快速、准确地预测出指定位置的测压管水位,对贮灰坝水头预报和电厂的安全生产具有实用价值。 Considering the favorable performance of support vector machines (SVM) in the respect of machine learning, a seepage-monitoring model based on support vector regression (SVR) is put forward. The cross-validation method via parallel grid search is used to avoid blindness and randomness in model parameter selection, and the prediction precision is improved. The comparison with traditional artificial neural network models (BP and RBF) shows that the proposed model has higher precision and generalization ability. The model can forecast fleetly and exactly the piezometric level of any appointed place. It is valuable for the water head forecast of ash storage dams and the safe operation of power plants.
出处 《水电自动化与大坝监测》 2006年第3期67-70,共4页 HYDROPOWER AUTOMATION AND DAM MONITORING
关键词 贮灰坝 渗流监测 支持向量机 支持向量回归 交叉验证法 ash storage dam seepage monitoring support vector machines (SVM) support vector regression (SVR) cross validation method
  • 相关文献

参考文献6

  • 1赵玲泽.火力发电厂贮灰场的安全监察[J].中国电力,1996,29(5):62-64. 被引量:4
  • 2吴中如编著..水工建筑物安全监控理论及其应用[M].北京:高等教育出版社,2003:406.
  • 3VAPNIK V. Statistical learning theory. New York,USA: Wiley, 1998. 被引量:1
  • 4GUNN S. Support vector machines for classification and regression. Southampton, UK : Southampton University, 1998. 被引量:1
  • 5BROWNE M W. Cross-validation methods. Journal of Mathematical Psychology, 2000, 44(1) : 108-132. 被引量:1
  • 6马妹英..贮灰坝渗流监测模型与安全预警分析[D].大连理工大学,2005:

共引文献3

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部