期刊文献+

High-Temperature Oxidation Behavior of 5Cr21Mn9Ni4N Steel Micro-Alloyed by Rare Earth 被引量:1

High-Temperature Oxidation Behavior of 5Cr21Mn9Ni4N Steel Micro-Alloyed by Rare Earth
下载PDF
导出
摘要 The oxidation resistance of 5Cr21Mn9Ni4N steel micro-alloying by RE at 700 - 900 ℃ was investigated. The results indicate that oxidation exponent n and oxidation activation energy are increased, and oxidation velocity constant kp is decreased when 0.2% RE is added in 5Cr21Mn9Ni4N steel. The addition of RE elements does not alter phase constitution of oxidation scale, however it improves the configuration of oxidation scale, and increases thermal stability and adhesivity of oxidation scale, which results in the raise of oxidation resistance of 5Cr21Mn9Ni4N steel at high temperature. The oxidation scale constitutes of refractory steel transfer from manganic oxide mostly to ferric oxide mostly with the increase of temperature, which leads to descend of compactness and desquamation resistance of oxidation scale. The mass increase of ferric oxide in the oxidation scale and the looseness of oxidation scale are the main reason to descend the oxidation resistance of refractory steel. The oxidation resistance of 5Cr21Mn9Ni4N steel micro-alloying by RE at 700 - 900 ℃ was investigated. The results indicate that oxidation exponent n and oxidation activation energy are increased, and oxidation velocity constant kp is decreased when 0.2% RE is added in 5Cr21Mn9Ni4N steel. The addition of RE elements does not alter phase constitution of oxidation scale, however it improves the configuration of oxidation scale, and increases thermal stability and adhesivity of oxidation scale, which results in the raise of oxidation resistance of 5Cr21Mn9Ni4N steel at high temperature. The oxidation scale constitutes of refractory steel transfer from manganic oxide mostly to ferric oxide mostly with the increase of temperature, which leads to descend of compactness and desquamation resistance of oxidation scale. The mass increase of ferric oxide in the oxidation scale and the looseness of oxidation scale are the main reason to descend the oxidation resistance of refractory steel.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第3期267-267,共1页 稀土学报(英文版)
关键词 5Cr21Mn9Ni4N steel oxidation kinetics oxidation scale oxidation resistance rare earths 5Cr21Mn9Ni4N steel oxidation kinetics oxidation scale oxidation resistance rare earths
  • 相关文献

同被引文献3

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部