期刊文献+

缆船非线性拖带系统及数值仿真 被引量:8

The Nonlinear Dynamics Model of Towed Cable-ship and Numerical Simulation
下载PDF
导出
摘要 基于船舶操纵性运动方程和拖缆的三维动力学运动方程,提出了被拖带船舶拖点位置匹配的方法,建立了缆-船非线性整体的拖带动力学模型,采用数值计算法实现了时域内拖带运动的模拟。对一艘具有航向稳定性船舶进行了拖带运动数值计算,拖带船舶采用PD控制方法较真实地模拟了拖带船舶航向改变的运动过程。数值计算讨论了拖点位置、拖缆长度、拖带航速对拖带航向稳定性的影响,结果表明:拖带航向稳定性与线性拖带理论一致,即拖点位置在水动力作用点之前拖带航向具有稳定性,拖缆长度和拖带航速对拖带航向稳定性无影响。拖缆长度和拖带航速可以影响拖带的航行品质,增加拖缆长度能有效抑制拖缆张力的振荡,拖带航速影响到航向角的响应快慢和超调量。 Based on the equations governing the motion of a ship and three dimension equations of towed cable system, the nonlinear towing system dynamics model of towing ship and towed ship connected by the cable is established by matching both positions of towed point of ship and end point of the cable. Then using numerical calculation method the simulation on the towing cable model is performed in time domain. The towing ship motion is also simulated by steering rudder using control rule of PD, therefore the motion of the towing ship under steering rudder can be truly calculated. The motion simulation for one towing system is carried out using the nonlinear towing system's dynamics model, and the influence of towed point position, towing cable length and towing speed on the course stability of the towed ship is discussed in detail. Simulation results show that course stability of towed ship is the same with the result given by linear towed ship course stability theory, that is, the towed ship will have course stability when the towed position is located on front point of hydrodynamics, and towing speed and towing cable length have no influence on course stability. The results of numerical simulation also show that longer cable can decrease vibration amplitude of cable tension, and towing speed can improve response quality of course of towed ship.
出处 《中国造船》 EI CSCD 北大核心 2006年第2期1-9,共9页 Shipbuilding of China
关键词 船舶、舰船工程 拖航 操纵性 航向稳定性 拖缆 ship engineering, towing maneuverability course stability towed cable
  • 相关文献

参考文献4

二级参考文献16

  • 1廖世俊,顾云冠,朱继懋.6000m深海拖曳系统动力响应计算[J].海洋工程,1995,13(2):31-37. 被引量:9
  • 2Paidoussis P M. Dynamics of flexible slender cylinders in axial flow theory[J] .J. Fluid Mech, 1966,26:717 - 736. 被引量:1
  • 3Dowling A P. The dynamics of towed flexible cylinders[J]. J. Fluid Mech, 1988,187:507-571. 被引量:1
  • 4Ablow C M, Schechter S. Numerical simulation of undersea cable dynamics[J]. Ocean Engng., 1983,10(6): 443 -457. 被引量:1
  • 5Sanders J V. A three-dimensional dynamic analysis of a towed system[J]. Ocean Engng., 1982,9(5) :483 - 499. 被引量:1
  • 6Kennedy R M, Strahan E S. A linear theory of transverse cable dynamics at low frequencies[ R]. NUSC Tech. Bep. 6463, Naval Underwater Systems Center, Newport, Rhode Island/New London, Connecticut. 被引量:1
  • 7Nomoto M, Hattori M. A Deep ROV "DOLPHIN 3K": Design and Performance Analysis [J]. IEEE J. Oceanic Engineering 1986.11(3): 373~391. 被引量:1
  • 8De Zoysa A P K. Steady-state Analysis of Undersea Cables [J]. Ocean Engng, 1978,5(2): 209~223. 被引量:1
  • 9Ablow C M,Schechter S. Numerical simulation of undersea cable dynamics [J]. Ocean Engng, 1983,10(6): 443~457. 被引量:1
  • 10Srivastava S K, Ganapathy C. Experimental Investigations on Loop Manoeuvre of Underwater Towed Cable-Array System [J].Ocean Engng, 1998,25(1):85~102. 被引量:1

共引文献43

同被引文献49

引证文献8

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部