期刊文献+

{αn}≤{βn}对所有正整数n成立是否蕴涵{α}={β}?

Does {αn}≤{βn} for all n imply {α}={β}?
下载PDF
导出
摘要 运用连分数理论证明了下面两个结果:①如果α,β为正实数且α不为整数,对所有正整数n满足{αn}≤{βn},那么{α}={β};②如果,αβ为正有理数,对所有素数p有{αp}≤{βp},那么{α}={β}.同时提出两个问题:①是否对n2也成立?②是否对,αβ为正无理数也成立? In this paper, the author proves the following results: ①Let α, β be two positive real numbers and a be not integer. If {αn}≤ {βn} holds for all positive integers n, then {α}= {β}. ② Let α, β be two positive rational numbers. If {αp}≤ {βp} holds for all primes p, then{α}= {β}. Two problems are also posed. Does {αn^2}≤ {βn^2} for all n^2 imply {α}= {β} ? Let α, β be two irrational numbers. Does {αp}≤ {βp} for all primes p imply {α}={β}?
作者 陈士超
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2006年第2期4-5,共2页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10471064)
关键词 分数部分 连分数 Dirichlet定理 fractional part continued fraction Dirichlet's theorem
  • 相关文献

参考文献7

  • 1GICA A.About some inequalities concerning the fractional part[J].Acta Univ Apulensis Math Inform,2004,7:127-134. 被引量:1
  • 2AKHUNZHANOV R K.On the construction of numbers with given Diophantine properties[J].(Russian)Chebyshevski Sb,2004,10(2):19-29. 被引量:1
  • 3ERDOS P,PALEF P P,SZEGEDY M.a(mod p)≤b(mod p) for all primes p implies a=b[J].Amer Math Monthly,1987,94(2):169-170. 被引量:1
  • 4DAVENPORT H.Multiplicative number theory[M].New York:Springer Verlag,1980. 被引量:1
  • 5HEATH-BROWN D R,JIA Chao-Hua.The distribution of αp modulo one[J].Proc London Math Soc,2002,84(3):79-104. 被引量:1
  • 6MARKLOF J.Almost modular functions and the distribution of n2x modulo one[J].Int Math Res Note,2003,39:2131-2151. 被引量:1
  • 7ZAHARESCU A.Correlation of fractional parts of n2α[J].Forum Math,2003,15(1):1-21. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部