期刊文献+

PBIL进化算法在自动组卷系统中的应用 被引量:2

Application of PBIL Algorithm in Automatic Test Paper Construction
下载PDF
导出
摘要 进化计算是一种搜索方法,广泛用于求解各类优化问题。PBIL算法将进化获得的知识———学习概率用以指导后代的产生,使搜索更具方向性,因而往往能取得更好的效果。自动组卷问题是一个典型的组合优化问题。文中针对PBIL算法的特点,设计了一个自动组卷求解方案,并用实验数据进行计算。结果表明:该算法计算速度快、稳定性好,尤其是在约束条件比较多的情况下,显示出算法的高适应性,是解决组卷问题较为理想的算法。 Evolutionary computation is a search method,which has been applied in solving optimization problems. PBIL algorithm instructs the generation of offspring through knowledge acquired from evolutionary, namely, learning probability, and makes the searching in the right direction. So can get the better result. Automatic test paper construction is a typical optimization problem. The paper brings forward an automatic test paper construetion solution through PBIL algorlthm, and evolutionary computation is realized by experiment data. The result shows that the algorithm has high - speed and good- stability. Especially under the condition with many limits, the algorithm shows that it is more adaptive and it is an ideal algorithm for solving the problem of paper organization.
出处 《计算机技术与发展》 2006年第6期80-82,共3页 Computer Technology and Development
关键词 进化计算 PBIL算法 组卷问题 evolutionary computation PBIL algorithm test paper construction problem
  • 相关文献

参考文献6

二级参考文献19

  • 1姚新,陈国良,徐惠敏,刘勇.进化算法研究进展[J].计算机学报,1995,18(9):694-706. 被引量:102
  • 2康立三 谢云.非数值并行算法(模拟退火算法)[M].北京:科学出版社,1994.. 被引量:3
  • 3Harik G, Goldberg D E. Linkage learning. Foundations of Genetic Algorithms 4 [C]. San Mateo, 1996, 247-262. 被引量:1
  • 4Pelikan M, Goldberg D E and Cantu-Paz E. Linkage problems,distribution estimate, and Bayesian network [J]. Evolutionary Computation, 2000, 8 (3): 311-340. 被引量:1
  • 5Pelikan M, Goldberg D E and Lobo F G. A survey of optimization by building and using probabilistic models [J]. Computational Optimization and Applications, 2002, 21(1): 5-20. 被引量:1
  • 6Hoehfeld, Markus. Towards a theory of population-based incremental learning [C]. Proceedings of the IEEE Conference on Evolutionary Computation 1997, 1-15. 被引量:1
  • 7S.Baluja and R.Caruana. Removing the genetics form the standard genetic algorithm. Proceeding of the International Conference on Machine Learning [C]. San Mateo, 1995, 38-46. 被引量:1
  • 8Gonzalez T, Sahni S. Flow shop and job shop schedules [J].Operations Research, 1978, 26: 36-52. 被引量:1
  • 9刘勇,博士学位论文,1994年 被引量:1
  • 10姚新,Proceedings of the AI’93 Workshop on Evolutionary Computation,1993年 被引量:1

共引文献131

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部