期刊文献+

基于数据挖掘的入侵检测精确度提升方法 被引量:1

Data Mining-Based Method on Improving of Intrusion Detection Precision
下载PDF
导出
摘要 入侵检测系统一直以来都是多层安全体系架构不可或缺的一部分,与传统的防御解决方案相比,基于数据挖掘的入侵检测有着较高的精确度,并能有效的识别未知的入侵模式,然而伪肯定率的存在也一直是阻止基于数据挖掘的入侵检测系统研究深入的最大阻碍.本文分析了影响入侵检测精确度的因素,提出了一种基于数据挖掘的有效提高精确度,降低伪肯定率的入侵检测方法. Intrusion detection system has long been recognized as a necessary component of a multilayered security architecture. Comparing with the traditional intrusion detection system, data mining-based intrusion detection has the feature of high precision, and to some extent can effectively recognize unknown attacks. However, the existence of false positives has long been a hindrance to deep research. In this paper, factors affecting the detection rate are analyzed and a method of intrusion detection system that can effectively improve precision and decrease false positive rate is presented.
作者 利业鞑 孙伟
出处 《北方工业大学学报》 2006年第1期1-5,20,共6页 Journal of North China University of Technology
关键词 入侵检测 数据挖掘 精确度 防御解决方案 IDS (intrusion detection system) data mining precision
  • 相关文献

参考文献7

  • 1Spafford, E Crisis, Aftermath. Communications of the ACM. 1989, 32(6):678-687 被引量:1
  • 2Lee W , Salvatore J Stolfo. Adaptive Intrusion Detection:a Data Mining Approach, Artificial Intelligence Review, 14(6):Kluwer AcademicPublishers,2000, 533-567 被引量:1
  • 3F Provost, T Fawcett. Robust Classification for Imprecise Environments, Machine Learning, 2001,42(3):203-231 被引量:1
  • 4Marcus J. Ranum, False Positives: A User's Guide to Making Sense of IDS Alarms http://www.icsalabs.com/html/communities/ids/whitepaper/FalsePositives.pdf 被引量:1
  • 5史忠值.知识发现[M].北京:清华大学出版社,2002.. 被引量:7
  • 6Robert C Holte, L Acker, B Porter. Concept learning and the problem of small disjuncts. In Proc. of Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89), 1989,813-818 被引量:1
  • 7M Joshi, R Agarwal, V Kumar. Predicting Rare Classes:Can Boosting Make Any Weak Learner Strong, Proceedings of Eight ACM Conference ACM SIGKDD International Conference on Knowledge Discovery and Data Min-ing, Edmonton, Canada, 2002 被引量:1

共引文献6

同被引文献6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部