期刊文献+

Approximation Theorems of Moore-Penrose Inverse by Outer Inverses

Approximation Theorems of Moore-Penrose Inverse by Outer Inverses
下载PDF
导出
摘要 Let X and Y be Hilbert spaces and T a bounded linear operator from X into Y with a separable range. In this note, we prove, without assuming the closeness of the range of T , that the Moore-Penrose inverse T + of T can be approximated by its bounded outer inverses T n# with finite ranks. Let X and Y be Hilbert spaces and T a bounded linear operator from X into Y with a separable range. In this note, we prove, without assuming the closeness of the range of T, that the Moore-Penrose inverse T^+ of T can be approximated by its bounded outer inverses Tn^# with finite ranks.
基金 Project supported by the National Science Foundation of China (Grant No. 10571150 and No. 10271053).
  • 相关文献

参考文献4

  • 1M. Z. Nashed,X. Chen.Convergence of Newton-like methods for singular operator equations using outer inverses[J].Numerische Mathematik.1993(1) 被引量:1
  • 2Wei Y,Wu H.The representation and approximation for the weighted Moore-Penrose inverse[].Applied Mathematics and Computation.2001 被引量:1
  • 3Groetsch C W.Generalized inverse of linear operator: representation and appximation[]..1977 被引量:1
  • 4Wei Y.The representation and approximation for the weighted Moore-Penrose inverse in Hilbert space[].Applied Mathematics and Computation.2003 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部