摘要
研究了具有状态空间为{0.1…,m} ̄s和具有紧邻转移概率矩阵P=(P(x,y))x,y∈s的广义简单排它过程的极限状况。用基本耦合方法证明了如果过程的初始分布μ是平移不变的且是遍历的,则它的极限分布是状态空间上的乘积测度。这个结果推广了Andjel[1]中的定理1.2.并且部分推广了[3]中的定理1.11。
This peper is devoted to the long time behaviour of a generalized simple exclusion Ptocesswith the state space{0,1, ...,m }s(m≥1, S is a countable set)and a transition Ptobobility matrixof nearest neighbour P=(p(x,y))x,y∈s.It has been proved that if the initial distributions of process is translations invariant,ergodic,then its limit distributions is a Product probability measure.So the theorem 1. 2 of [1] and the theorem 1.11 of[3]are thence extended.
出处
《广东机械学院学报》
1996年第1期41-48,共8页
Industrial Engineering Journal
关键词
紧邻
排它过程
平移不变
遍历
概率模型
Nearest neighbour
exclusion Process translations invariant
ergodic
couple