期刊文献+

动态MPCA在发酵过程监测与故障诊断中的应用 被引量:8

Fermentation Process Monitoring and Fault Detection Based on Dynamic MPCA
下载PDF
导出
摘要 针对发酵过程非线性和时变特点,提出了一种具有实时性的动态MPCA方法,采用多模型非线性结构代替传统MPCA单模型线性化结构,克服了后者不能处理非线性过程和实时性的问题,并避免了MPCA在线应用时预报未来测量值带来的误差,提高了发酵过程性能监测和故障诊断的准确性。对头孢菌素C发酵过程的拟在线仿真研究,验证了基于动态MPCA的统计过程监测的有效性。 A dynamic multiway principle component analysis for on-line batch process monitoring and fault detection was proposed. It integrates the time-lagged windows of process dynamic behavior with the multiway principle component analysis (MPCA). Using multi-model instead of single model, the dynamic MPCA approach emphasizes particularly on-line process performance monitoring and fault detecting. On-line process monitoring of eephalosporin C fermentation was studied, the results demonstrate that the dynamic MPCA method is able to efficiently monitor performance of the fermentation process and exactly detect faults which results in extraordinary behavior of processes.
出处 《生物工程学报》 CAS CSCD 北大核心 2006年第3期483-487,共5页 Chinese Journal of Biotechnology
基金 国家自然科学基金资助项目(No.60574038)~~
关键词 多方向主元分析(MPCA) 多模型 发酵过程 在线监测 故障诊断 multiway principle component analysis( MPCA), multi-model, fermentation, on-line monitoring, fault detection
  • 相关文献

参考文献6

  • 1李运锋,袁景淇.神经网络预报在发酵过程异常诊断中的应用[J].生物工程学报,2005,21(1):102-106. 被引量:7
  • 2Louwerse D J, Smilde AK. Multivariate statistical process control of batch processes based on three-way modds. Chemical Engineering Science ,2000,55 : 1225 - 1235 被引量:1
  • 3Nomikos P, MacGregor JF. Monitoring batch process using muhiway principal component analysis. AIChE Journal, 1994,40(8) : 1361 -1375 被引量:1
  • 4Ku W, Storer RH, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 1995,30:179 - 196 被引量:1
  • 5Sarolta A, Robert D Kiuley. Multivariate statistical monitoring of batch processes : an industrial case study of fermentation supervision.TRENDS in Biotechnology ,2001,19(2) :53 - 62 被引量:1
  • 6Yuan JQ, Vanrolleghem PA. Rolling learning-prediction of product formation in bioprocesses. Journal of Biotechnology, 1999,69:47 - 62 被引量:1

二级参考文献7

  • 1Yuan JQ, Vanrolleghem PA. Rolling learning- prediction of product fotation in bioprocesses. Journal of Biotechnology, 1999, 69: 47- 62. 被引量:1
  • 2Yuan JQ, Guo SR, Schuegerl K et al. Profit optimization for mycelia fed-brach cultivation. Journal of Biotechnology, 1997, 54: 175- 193. 被引量:1
  • 3Isermann R. Process fault detection based on modeling and estimation methods. IFAC by Pergamon Press, 1983, 1: 7 - 30. 被引量:1
  • 4Herbert MR, Williams GH. An initial evaluation of the detection and diagnosis of power plant faults using a deep knowledge representation of physical behaviour. EXPERT SYSTEMS, 1987, 4(2): 90- 99. 被引量:1
  • 5Yu DL, Gomm JB, Williams D. Sensor fault diagnosis in a chemical proess via RBF neural networks. Control Engineering Pratice,1999, 7(1): 49-55. 被引量:1
  • 6Gregersen L, Jorgensen SB. Supervision of fed-batch fermentations.Chemical Engineering Journal, 1999, 75(1): 69 - 76. 被引量:1
  • 7Massimo CD, Montague GA, Willis MJ et al. Towards improved penicillin fermentation via artificial neural networks. Computers &Chemical Engineering, 1992, 16(4): 283 - 291. 被引量:1

共引文献6

同被引文献110

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部